Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Mol Cell Cardiol ; 190: 24-34, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527667

RESUMO

Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking ß-sarcoglycan (ß-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this ß-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in ß-SG-/- mice. Male ß-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female ß-SG-/- hearts. This protection of females was independent of ovarian hormones. Male ß-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of ß-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male ß-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male ß-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.


Assuntos
Antioxidantes , Cardiomiopatias , Miocárdio , Estresse Oxidativo , Sarcoglicanas , Animais , Masculino , Sarcoglicanas/metabolismo , Sarcoglicanas/genética , Feminino , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Camundongos , Antioxidantes/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Suscetibilidade a Doenças , Isoproterenol , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética
2.
Am J Physiol Heart Circ Physiol ; 326(2): H396-H407, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099842

RESUMO

Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Camundongos Endogâmicos mdx , Miocárdio , Coração , Distrofia Muscular de Duchenne/complicações , Oxigênio , Modelos Animais de Doenças
3.
Biofabrication ; 16(1)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37906964

RESUMO

While the field of tissue engineering has progressed rapidly with the advent of 3D bioprinting and human induced pluripotent stem cells (hiPSCs), impact is limited by a lack of functional, thick tissues. One way around this limitation is to 3D bioprint tissues laden with hiPSCs. In this way, the iPSCs can proliferate to populate the thick tissue mass prior to parenchymal cell specification. Here we design a perfusion bioreactor for an hiPSC-laden, 3D-bioprinted chamber with the goal of proliferating the hiPSCs throughout the structure prior to differentiation to generate a thick tissue model. The bioreactor, fabricated with digital light projection, was optimized to perfuse the interior of the hydrogel chamber without leaks and to provide fluid flow around the exterior as well, maximizing nutrient delivery throughout the chamber wall. After 7 days of culture, we found that intermittent perfusion (15 s every 15 min) at 3 ml min-1provides a 1.9-fold increase in the density of stem cell colonies in the engineered tissue relative to analogous chambers cultured under static conditions. We also observed a more uniform distribution of colonies within the tissue wall of perfused structures relative to static controls, reflecting a homogeneous distribution of nutrients from the culture media. hiPSCs remained pluripotent and proliferative with application of fluid flow, which generated wall shear stresses averaging ∼1.0 dyn cm-2. Overall, these promising outcomes following perfusion of a stem cell-laden hydrogel support the production of multiple tissue types with improved thickness, and therefore increased function and utility.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Alicerces Teciduais/química , Engenharia Tecidual , Perfusão , Diferenciação Celular , Hidrogéis , Reatores Biológicos
4.
Neuromuscul Disord ; 33(10): 776-781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37775424

RESUMO

Duchenne muscular dystrophy is a devastating muscle disease characterized by muscle deterioration and cardiomyopathy. The cardiomyopathy is progressive in nature, marked by the accumulation of myocardial scarring and the loss of contractile function. The presence of cardiac disfunction is nearly universal in individuals with Duchenne muscular dystrophy with dysfunction being evident in patients < 10 years of age. In recognition of importance of prophylactic treatment, clinical guidelines recommend beginning treatment of the heart disease in Duchenne muscular dystrophy patients at 10 years of age, even in the absence of cardiac dysfunction. This manuscript evaluates the current practices of treatment of dystrophic cardiomyopathy. We make use of clinical data compiled by the Muscular Dystrophy Association to assess changes in medical management of cardiac disease in Duchenne muscular dystrophy patients in response to changes in guidelines. We find since the issuance of new guidelines Duchenne muscular dystrophy patients receiving cardiac-directed therapy are beginning it at significantly younger ages. However, we show that 64 % of individuals with Duchenne muscular dystrophy are not receiving the recommended cardiac therapies. The underlying causes of this gap in guideline adherence are complex but correcting this deficiency represent a significant opportunity to improve the clinical management of dystrophic cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/tratamento farmacológico , Cardiomiopatias/patologia , Miocárdio/patologia , Cicatriz
5.
J Mol Cell Cardiol ; 181: 33-45, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230379

RESUMO

Transport of Ca2+ into mitochondria is thought to stimulate the production of ATP, a critical process in the heart's fight or flight response, but excess Ca2+ can trigger cell death. The mitochondrial Ca2+ uniporter complex is the primary route of Ca2+ transport into mitochondria, in which the channel-forming protein MCU and the regulatory protein EMRE are essential for activity. In previous studies, chronic Mcu or Emre deletion differed from acute cardiac Mcu deletion in response to adrenergic stimulation and ischemia/reperfusion (I/R) injury, despite equivalent inactivation of rapid mitochondrial Ca2+ uptake. To explore this discrepancy between chronic and acute loss of uniporter activity, we compared short-term and long-term Emre deletion using a novel conditional cardiac-specific, tamoxifen-inducible mouse model. After short-term Emre deletion (3 weeks post-tamoxifen) in adult mice, cardiac mitochondria were unable to take up Ca2+, had lower basal mitochondrial Ca2+ levels, and displayed attenuated Ca2+-induced ATP production and mPTP opening. Moreover, short-term EMRE loss blunted cardiac response to adrenergic stimulation and improved maintenance of cardiac function in an ex vivo I/R model. We then tested whether the long-term absence of EMRE (3 months post-tamoxifen) in adulthood would lead to distinct outcomes. After long-term Emre deletion, mitochondrial Ca2+ handling and function, as well as cardiac response to adrenergic stimulation, were similarly impaired as in short-term deletion. Interestingly, however, protection from I/R injury was lost in the long-term. These data suggest that several months without uniporter function are insufficient to restore bioenergetic response but are sufficient to restore susceptibility to I/R.


Assuntos
Canais de Cálcio , Membranas Mitocondriais , Animais , Camundongos , Trifosfato de Adenosina , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo
6.
J Lipid Res ; 64(6): 100374, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075982

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.


Assuntos
Insuficiência Cardíaca , Síndrome Metabólica , Masculino , Feminino , Camundongos , Animais , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Oxilipinas , Síndrome Metabólica/complicações , Volume Sistólico/fisiologia , Remodelação Ventricular , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Inflamação/complicações
7.
J Neuroeng Rehabil ; 18(1): 113, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246310

RESUMO

BACKGROUND: While new therapies are continuously introduced to treat muscular dystrophy, current assessment tests are challenging to quantify, cannot be used in non-ambulatory patients, or can de-motivate pediatric patients. We developed a simple, engaging, upper-limb assessment tool that measures muscle strength and fatigue in children, including children with muscular dystrophy. The device is a bio-feedback grip sensor that motivates children to complete maximal and fatiguing grip protocols through a game-based interface. METHODS: To determine if the new system provided the same maximum grip force as what is reported in the literature, data was collected from 311 participants without muscle disease (186 M, 125 F), ages 6 to 30, each of whom played the four minute grip game once. We compared maximum voluntary contraction at the start of the test to normative values reported in the literature using Welch's unequal variances t-tests. In addition, we collected data on a small number of participants with muscle disease to determine if the assessment system could be used by the target patient population. RESULTS: Of the 311 participants without muscle disease that started the test, all but one completed the game. The maximum voluntary contraction data, when categorized by age, matched literature values for hand grip force within an acceptable range. Grip forced increased with age and differed by gender, and most participants exhibited fatigue during the game, including a degradation in tracking ability as the game progressed. Of the 13 participants with muscle disease, all but one completed the game. CONCLUSIONS: The study demonstrated the technical feasibility and validity of the new hand grip device, and indicated that the device can be used to assess muscle force and fatigue in longitudinal studies of children with muscular dystrophy.


Assuntos
Força da Mão , Jogos de Vídeo , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Força Muscular , Dinamômetro de Força Muscular , Músculos , Adulto Jovem
8.
Sci Rep ; 10(1): 17195, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057067

RESUMO

Understanding the energetic state of the heart is essential for unraveling the central tenets of cardiac physiology. The heart uses a tremendous amount of energy and reductions in that energy supply can have lethal consequences. While ischemic events clearly result in significant metabolic perturbations, heart failure with both preserved and reduced ejection fraction display reductions in energetic status. To date, most cardiac energetics have been performed using 31P-NMR, which requires dedicated access to a specialized NMR spectrometer. This has limited the availability of this method to a handful of centers around the world. Here we present a method of assessing myocardial energetics in the isolated mouse heart using 1H-NMR spectrometers that are widely available in NMR core facilities. In addition, this methodology provides information on many other important metabolites within the heart, including unique metabolic differences between the hypoxic and ischemic hearts. Furthermore, we demonstrate the correlation between myocardial energetics and measures of contractile function in the mouse heart. These methods will allow a broader examination of myocardial energetics providing a valuable tool to aid in the understanding of the nature of these energetic deficits and to develop therapies directed at improving myocardial energetics in failing hearts.


Assuntos
Metabolismo Energético/fisiologia , Coração/fisiologia , Miocárdio/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , N-Glicosil Hidrolases/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos
9.
Circ Res ; 127(2): 207-224, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32228120

RESUMO

RATIONALE: One goal of cardiac tissue engineering is the generation of a living, human pump in vitro that could replace animal models and eventually serve as an in vivo therapeutic. Models that replicate the geometrically complex structure of the heart, harboring chambers and large vessels with soft biomaterials, can be achieved using 3-dimensional bioprinting. Yet, inclusion of contiguous, living muscle to support pump function has not been achieved. This is largely due to the challenge of attaining high densities of cardiomyocytes-a notoriously nonproliferative cell type. An alternative strategy is to print with human induced pluripotent stem cells, which can proliferate to high densities and fill tissue spaces, and subsequently differentiate them into cardiomyocytes in situ. OBJECTIVE: To develop a bioink capable of promoting human induced pluripotent stem cell proliferation and cardiomyocyte differentiation to 3-dimensionally print electromechanically functional, chambered organoids composed of contiguous cardiac muscle. METHODS AND RESULTS: We optimized a photo-crosslinkable formulation of native ECM (extracellular matrix) proteins and used this bioink to 3-dimensionally print human induced pluripotent stem cell-laden structures with 2 chambers and a vessel inlet and outlet. After human induced pluripotent stem cells proliferated to a sufficient density, we differentiated the cells within the structure and demonstrated function of the resultant human chambered muscle pump. Human chambered muscle pumps demonstrated macroscale beating and continuous action potential propagation with responsiveness to drugs and pacing. The connected chambers allowed for perfusion and enabled replication of pressure/volume relationships fundamental to the study of heart function and remodeling with health and disease. CONCLUSIONS: This advance represents a critical step toward generating macroscale tissues, akin to aggregate-based organoids, but with the critical advantage of harboring geometric structures essential to the pump function of cardiac muscle. Looking forward, human chambered organoids of this type might also serve as a test bed for cardiac medical devices and eventually lead to therapeutic tissue grafting.


Assuntos
Bioimpressão/métodos , Diferenciação Celular , Miócitos Cardíacos/fisiologia , Organoides/fisiologia , Engenharia Tecidual/métodos , Potenciais de Ação , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organoides/citologia , Organoides/metabolismo
10.
J Am Coll Cardiol ; 75(10): 1159-1174, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32164890

RESUMO

BACKGROUND: Although cardiomyopathy has emerged as a leading cause of death in Duchenne muscular dystrophy (DMD), limited studies and therapies have emerged for dystrophic heart failure. OBJECTIVES: The purpose of this study was to model DMD cardiomyopathy using DMD patient-specific human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and to identify physiological changes and future drug therapies. METHODS: To explore and define therapies for DMD cardiomyopathy, the authors used DMD patient-specific hiPSC-derived cardiomyocytes to examine the physiological response to adrenergic agonists and ß-blocker treatment. The authors further examined these agents in vivo using wild-type and mdx mouse models. RESULTS: At baseline and following adrenergic stimulation, DMD hiPSC-derived cardiomyocytes had a significant increase in arrhythmic calcium traces compared to isogenic controls. Furthermore, these arrhythmias were significantly decreased with propranolol treatment. Using telemetry monitoring, the authors observed that mdx mice, which lack dystrophin, had an arrhythmic death when stimulated with isoproterenol; the lethal arrhythmias were rescued, in part, by propranolol pre-treatment. Using single-cell and bulk RNA sequencing (RNA-seq), the authors compared DMD and control hiPSC-derived cardiomyocytes, mdx mice, and control mice (in the presence or absence of propranolol and isoproterenol) and defined pathways that were perturbed under baseline conditions and pathways that were normalized after propranolol treatment in the mdx model. The authors also undertook transcriptome analysis of human DMD left ventricle samples and found that DMD hiPSC-derived cardiomyocytes have dysregulated pathways similar to the human DMD heart. The authors further determined that relatively few patients with DMD see a cardiovascular specialist or receive ß-blocker therapy. CONCLUSIONS: The results highlight mechanisms and therapeutic interventions from human to animal and back to human in the dystrophic heart. These results may serve as a prelude for an adequately powered clinical study that examines the impact of ß-blocker therapy in patients with dystrophinopathies.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Adolescente , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Animais , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Adrenérgicos beta/fisiologia , Adulto Jovem
11.
Hum Mol Genet ; 29(6): 944-954, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31976522

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease that causes progressive muscle wasting and cardiomyopathy. This X-linked disease results from mutations of the DMD allele on the X-chromosome resulting in the loss of expression of the protein dystrophin. Dystrophin loss causes cellular dysfunction that drives the loss of healthy skeletal muscle and cardiomyocytes. As gene therapy strategies strive toward dystrophin restoration through micro-dystrophin delivery or exon skipping, preclinical models have shown that incomplete restoration in the heart results in heterogeneous dystrophin expression throughout the myocardium. This outcome prompts the question of how much dystrophin restoration is sufficient to rescue the heart from DMD-related pathology. Female DMD carrier hearts can shed light on this question, due to their mosaic cardiac dystrophin expression resulting from random X-inactivation. In this work, a dystrophinopathy carrier mouse model was derived by breeding male or female dystrophin-null mdx mice with a wild type mate. We report that these carrier hearts are significantly susceptible to injury induced by one or multiple high doses of isoproterenol, despite expressing ~57% dystrophin. Importantly, only carrier mice with dystrophic mothers showed mortality after isoproterenol. These findings indicate that dystrophin restoration in approximately half of the heart still allows for marked vulnerability to injury. Additionally, the discovery of divergent stress-induced mortality based on parental origin in mice with equivalent dystrophin expression underscores the need for better understanding of the epigenetic, developmental, and even environmental factors that may modulate vulnerability in the dystrophic heart.


Assuntos
Cardiomiopatias/patologia , Modelos Animais de Doenças , Distrofina/genética , Distrofia Muscular de Duchenne/complicações , Mutação , Miocárdio/patologia , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx
12.
Sci Rep ; 9(1): 12306, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444390

RESUMO

Duchenne muscular dystrophy (DMD) is a uniformly fatal condition of striated muscle wasting resulting in premature death from respiratory and/or cardiac failure. Symptomatic therapy has prolonged survival by limiting deaths resulting from respiratory insufficiency, but there is currently no effective therapy for most patients with DMD. This grim prognosis has led patients and their families to seek unproven therapeutic approaches. One such approach is the use of hyperbaric therapies, which 14% of DMD patients self-report using. The primary goal of this study was to determine if intermittent hyperbaric exposure altered the muscle function of the mdx mouse, a genetic model of DMD. To do this, mdx mice were exposed to three daily 90-minute 1.3 atmosphere hyperbaric exposures for 4 weeks. Skeletal muscle, respiratory, and cardiac function were assessed in treated and untreated wild type and dystrophic mice. The results of these studies find that hyperbaric and hyperoxic approaches resulted in increased cardiac fibrosis in dystrophic mice and no beneficial effects on the functional parameters measured. These data suggest that these oxygen-based therapies are unlikely to provide therapeutic benefit to DMD patients.


Assuntos
Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/fisiopatologia , Oxigenoterapia Hiperbárica/efeitos adversos , Músculo Esquelético/fisiopatologia , Respiração , Animais , Fibrose , Força da Mão , Coração/fisiopatologia , Hemodinâmica , Hiperóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Condicionamento Físico Animal , Pletismografia , Pressão
13.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443395

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating disease featuring skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. Historically, respiratory failure has been the leading cause of mortality in DMD, but recent improvements in symptomatic respiratory management have extended the life expectancy of DMD patients. With increased longevity, the clinical relevance of heart disease in DMD is growing, as virtually all DMD patients over 18 year of age display signs of cardiomyopathy. This review will focus on the pathophysiological basis of DMD in the heart and discuss the therapeutic approaches currently in use and those in development to treat dystrophic cardiomyopathy. The first section will describe the aspects of the DMD that result in the loss of cardiac tissue and accumulation of fibrosis. The second section will discuss cardiac small molecule therapies currently used to treat heart disease in DMD, with a focus on the evidence supporting the use of each drug in dystrophic patients. The final section will outline the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, or repair. There are several new and promising therapeutic approaches that may protect the dystrophic heart, but their limitations suggest that future management of dystrophic cardiomyopathy may benefit from combining gene-targeted therapies with small molecule therapies. Understanding the mechanistic basis of dystrophic heart disease and the effects of current and emerging therapies will be critical for their success in the treatment of patients with DMD.


Assuntos
Cardiomiopatias/etiologia , Distrofia Muscular de Duchenne/complicações , Animais , Cálcio/metabolismo , Cardiomiopatias/diagnóstico , Cardiomiopatias/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Distrofina/genética , Éxons , Fibrose , Terapia Genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
J Mol Cell Cardiol ; 128: 51-61, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664850

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disease characterized by skeletal muscle degeneration and a significant cardiomyopathy secondary to cardiomyocyte damage and myocardial loss. The molecular basis of DMD lies in the absence of the protein dystrophin, which plays critical roles in mechanical membrane integrity and protein localization at the sarcolemma. A popular mouse model of DMD is the mdx mouse, which lacks dystrophin and displays mild cardiac and skeletal pathology that can be exacerbated to advance the disease state. In clinical and pre-clinical studies of DMD, angiotensin signaling pathways have emerged as therapeutic targets due to their adverse influence on muscle remodeling and oxidative stress. Here we aim to establish a physiologically relevant cardiac injury model in the mdx mouse, and determine whether acute blockade of the angiotensin II type 1 receptor (AT1R) may be utilized for prevention of dystrophic injury. METHODS AND RESULTS: A single IP injection of isoproterenol (Iso, 10 mg/kg) was used to induce cardiac stress and injury in mdx and wild type (C57Bl/10) mice. Mice were euthanized 8 h, 30 h, 1 week, or 1 month following the injection, and hearts were harvested for injury evaluation. At 8 and 30 h post-injury, mdx hearts showed 2.2-fold greater serum cTnI content and 3-fold more extensive injury than wild type hearts. Analysis of hearts 1 week and 1 month after injury revealed significantly higher fibrosis in mdx hearts, with a more robust and longer-lasting immune response compared to wild type hearts. In the 30-hour group, losartan treatment initiated 1 h before Iso injection protected dystrophic hearts from cardiac damage, reducing mdx acute injury area by 2.8-fold, without any significant effect on injury in wild type hearts. However, both wild type and dystrophic hearts showed a 2-fold reduction in the magnitude of the macrophage response to injury 30 h after Iso with losartan. CONCLUSIONS: This work demonstrates that acute blockade of AT1R has the potential for robust injury prevention in a model of Iso-induced dystrophic heart injury. In addition to selectively limiting dystrophic cardiac damage, blocking AT1R may serve to limit the inflammatory nature of the immune response to injury in all hearts. Our findings strongly suggest that earlier adoption of angiotensin receptor blockers in DMD patients could limit myocardial damage and subsequent cardiomyopathy.


Assuntos
Cardiomiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Receptor Tipo 1 de Angiotensina/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Distrofina/genética , Coração/fisiopatologia , Humanos , Isoproterenol/farmacologia , Losartan/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Sarcolema/metabolismo , Sarcolema/patologia
15.
Sci Rep ; 8(1): 13624, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206270

RESUMO

Duchenne muscular dystrophy (DMD) is a disease marked by the development of skeletal muscle weakness and wasting. DMD results from mutations in the gene for the cytoskeletal protein dystrophin. The loss of dystrophin expression is not limited to muscle weakness but has multiple systemic consequences. Managing the nutritional requirements is an important aspect of the clinical care of DMD patients and is complicated by the poor understanding of the role of dystrophin, and dystrophic processes, in regulating metabolism. Here, we show that mdx mice, a genetic model of DMD, have significantly reduced fat mass relative to wild type C57BL/10. The alteration in body composition is independent of the presence of skeletal muscle disease, as it is still present in mice with transgenic expression of a fully-functional dystrophin in skeletal muscle. Furthermore, mdx mice do not increase their fat mass or body weight when housed under thermoneutral conditions, in marked contrast to C57BL/10 mice. We also demonstrated that mdx mice have significantly reduced fat metabolism and altered glucose uptake. These significant metabolic changes in dystrophic mice implicate dystrophin as an important regulator of metabolism. Understanding the metabolic functions of dystrophin is important for managing the nutritional needs of DMD patients.


Assuntos
Distrofina/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Animais , Composição Corporal/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/patologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Mutação
16.
J Endocrinol ; 236(3): 151-165, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371236

RESUMO

Excessive and/or persistent activation of calcium-calmodulin protein kinase II (CaMKII) is detrimental in acute and chronic cardiac injury. However, intrinsic regulators of CaMKII activity are poorly understood. We find that cellular retinoic acid-binding protein 1 (CRABP1) directly interacts with CaMKII and uncover a functional role for CRABP1 in regulating CaMKII activation. We generated Crabp1-null mice (CKO) in C57BL/6J background for pathophysiological studies. CKO mice develop hypertrophy as adults, exhibiting significant left ventricular dilation with reduced ejection fraction at the baseline cardiac function. Interestingly, CKO mice have elevated basal CaMKII phosphorylation at T287, and phosphorylation on its substrate phospholamban (PLN) at T17. Acute isoproterenol (ISO) challenge (80 mg/kg two doses in 1 day) causes more severe apoptosis and necrosis in CKO hearts, and treatment with a CaMKII inhibitor KN-93 protects CKO mice from this injury. Chronic (30 mg/kg/day) ISO challenge also significantly increases hypertrophy and fibrosis in CKO mice as compared to WT. In wild-type mice, CRABP1 expression is increased in early stages of ISO challenge and eventually reduces to the basal level. Mechanistically, CRABP1 directly inhibits CaMKII by competing with calmodulin (CaM) for CaMKII interaction. This study demonstrates increased susceptibility of CKO mice to ISO-induced acute and chronic cardiac injury due to, at least in part, elevated CaMKII activity. Deleting Crabp1 results in reduced baseline cardiac function and aggravated damage challenged with acute and persistent ß-adrenergic stimulation. This is the first report of a physiological role of CRABP1 as an endogenous regulator of CaMKII, which protects the heart from ISO-induced damage.


Assuntos
Coração/efeitos dos fármacos , Coração/fisiopatologia , Isoproterenol/administração & dosagem , Receptores do Ácido Retinoico/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Cardiotônicos , Ativação Enzimática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Necrose/induzido quimicamente , Receptores do Ácido Retinoico/deficiência , Receptores do Ácido Retinoico/metabolismo , Remodelação Ventricular/fisiologia
17.
J Vis Exp ; (111)2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27166576

RESUMO

Understanding the causes and progression of heart disease presents a significant challenge to the biomedical community. The genetic flexibility of the mouse provides great potential to explore cardiac function at the molecular level. The mouse's small size does present some challenges in regards to performing detailed cardiac phenotyping. Miniaturization and other advancements in technology have made many methods of cardiac assessment possible in the mouse. Of these, the simultaneous collection of pressure and volume data provides a detailed picture of cardiac function that is not available through any other modality. Here a detailed procedure for the collection of pressure-volume loop data is described. Included is a discussion of the principles underlying the measurements and the potential sources of error. Anesthetic management and surgical approaches are discussed in great detail as they are both critical to obtaining high quality hemodynamic measurements. The principles of hemodynamic protocol development and relevant aspects of data analysis are also addressed.


Assuntos
Coração/fisiopatologia , Animais , Pressão Sanguínea , Monitores de Pressão Arterial , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Hemodinâmica , Camundongos
18.
Am J Physiol Heart Circ Physiol ; 310(7): H938-48, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26851247

RESUMO

Duchenne muscular dystrophy (DMD) is a disease of progressive destruction of striated muscle, resulting in muscle weakness with progressive respiratory and cardiac failure. Respiratory and cardiac disease are the leading causes of death in DMD patients. Previous studies have suggested an important link between cardiac dysfunction and hypoxia in the dystrophic heart; these studies aim to understand the mechanism underlying this connection. Here we demonstrate that anesthetized dystrophic mice display significant mortality following acute exposure to hypoxia. This increased mortality is associated with a significant metabolic acidosis, despite having significantly higher levels of arterial Po2 Chronic hypoxia does not result in mortality, but rather is characterized by marked cardiac fibrosis. Studies in isolated hearts reveal that the contractile function of dystrophic hearts is highly susceptible to short bouts of ischemia, but these hearts tolerate prolonged acidosis better than wild-type hearts, indicating an increased sensitivity of the dystrophic heart to hypoxia. Dystrophic hearts display decreased cardiac efficiency and oxygen extraction. Isolated dystrophic cardiomyocytes and hearts have normal levels of FCCP-induced oxygen consumption, and mitochondrial morphology and content are normal in the dystrophic heart. These studies demonstrate reductions in cardiac efficiency and oxygen extraction of the dystrophic heart. The underlying cause of this reduced oxygen extraction is not clear; however, the current studies suggest that large disruptions of mitochondrial respiratory function or coronary flow regulation are not responsible. This finding is significant, as hypoxia is a common and largely preventable component of DMD that may contribute to the progression of the cardiac disease in DMD patients.


Assuntos
Hipóxia/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Miocárdio/patologia , Animais , Células Cultivadas , Fibrose , Hipóxia/complicações , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Cardíacas/metabolismo , Distrofia Muscular de Duchenne/complicações , Contração Miocárdica , Miocárdio/metabolismo , Oxigênio/metabolismo
19.
PLoS One ; 10(8): e0135000, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26262993

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo. METHODS AND RESULTS: Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05). CONCLUSION: Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.


Assuntos
Metabolismo Energético , Espectroscopia de Ressonância Magnética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Miocárdio/patologia
20.
Physiol Rep ; 3(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26311833

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive striated muscle disease that is characterized by skeletal muscle weakness with progressive respiratory and cardiac failure. Together respiratory and cardiac disease account for the majority of mortality in the DMD patient population. However, little is known regarding the effects of respiratory dysfunction on the dystrophic heart. The studies described here examine the effects of acute hypoxia on cardiac function. These studies demonstrate, for the first time, that a mouse model of DMD displays significant mortality following acute exposure to hypoxia. This mortality is characterized by a steady decline in systolic function. Retrospective analysis reveals that significant decreases in diastolic dysfunction, especially in the right ventricle, precede the decline in systolic pressure. The initial hemodynamic response to acute hypoxia in the mouse is similar to that observed in larger species, with significant increases in right ventricular afterload and decreases in left ventricular preload being observed. Significant increases in heart rate and contractility suggest hypoxia-induced activation of the sympathetic nervous system. These studies provide evidence that while hypoxia presents significant hemodynamic challenges to the dystrophic right ventricle, global cardiac dysfunction precedes hypoxia-induced mortality in the dystrophic heart. These findings are clinically relevant as the respiratory insufficiency evident in patients with DMD results in significant bouts of hypoxia. The results of these studies indicate that hypoxia may contribute to the acceleration of the heart disease in DMD patients. Importantly, hypoxia can be avoided through the use of ventilatory support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...