Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(3): 241-250, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38216552

RESUMO

Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for the mechanisms of their biological functions as well as their potential as therapeutic targets.


Assuntos
COVID-19 , Infecções por HIV , Poliovirus , Humanos , SARS-CoV-2/metabolismo , Proteínas Viroporinas , Proteínas Virais Reguladoras e Acessórias , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/metabolismo
2.
bioRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645758

RESUMO

Viroporins constitute a class of viral membrane proteins with diverse roles in the viral life cycle. They can self-assemble and form pores within the bilayer that transport substrates, such as ions and genetic material, that are critical to the viral infection cycle. However, there is little known about the oligomeric state of most viroporins. Here, we use native mass spectrometry (MS) in detergent micelles to uncover the patterns of oligomerization of the full-length SARS-CoV-2 envelope (E) protein, poliovirus VP4, and HIV Vpu. Our data suggest that the E protein is a specific dimer, VP4 is exclusively monomeric, and Vpu assembles into a polydisperse mixture of oligomers under these conditions. Overall, these results revealed the diversity in the oligomerization of viroporins, which has implications for mechanisms of their biological functions as well as their potential as therapeutic targets.

3.
Methods ; 218: 1-13, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482149

RESUMO

Many membrane proteins form functional complexes that are either homo- or hetero-oligomeric. However, it is challenging to characterize membrane protein oligomerization in intact lipid bilayers, especially for polydisperse mixtures. Native mass spectrometry of membrane proteins and peptides inserted in lipid nanodiscs provides a unique method to study the oligomeric state distribution and lipid preferences of oligomeric assemblies. To interpret these complex spectra, we developed novel data analysis methods using macromolecular mass defect analysis. Here, we provide an overview of how mass defect analysis can be used to study oligomerization in nanodiscs, discuss potential limitations in interpretation, and explore strategies to resolve these ambiguities. Finally, we review recent work applying this technique to studying formation of antimicrobial peptide, amyloid protein, and viroporin complexes with lipid membranes.


Assuntos
Proteínas de Membrana , Nanoestruturas , Proteínas de Membrana/química , Espectrometria de Massas , Peptídeos , Bicamadas Lipídicas/química , Nanoestruturas/química
4.
Nat Commun ; 13(1): 4370, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902581

RESUMO

Treatment with ß-lactam antibiotics, particularly cephalosporins, is a major risk factor for Clostridioides difficile infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), which are serine-based enzymes that assemble the bacterial cell wall. However, C. difficile has four different PBPs (PBP1-3 and SpoVD) with various roles in growth and spore formation, and their specific links to ß-lactam resistance in this pathogen are underexplored. Here, we show that PBP2 (known to be essential for vegetative growth) is the primary bactericidal target for ß-lactams in C. difficile. PBP2 is insensitive to cephalosporin inhibition, and this appears to be the main basis for cephalosporin resistance in this organism. We determine crystal structures of C. difficile PBP2, alone and in complex with ß-lactams, revealing unique features including ligand-induced conformational changes and an active site Zn2+-binding motif that influences ß-lactam binding and protein stability. The Zn2+-binding motif is also present in C. difficile PBP3 and SpoVD (which are known to be essential for sporulation), as well as in other bacterial taxa including species living in extreme environments and the human gut. We speculate that this thiol-containing motif and its cognate Zn2+ might function as a redox sensor to regulate cell wall synthesis for survival in adverse or anaerobic environments.


Assuntos
Resistência às Cefalosporinas , Clostridioides difficile , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalosporinas/farmacologia , Clostridioides , Humanos , Serina , Zinco , beta-Lactamas/farmacologia
6.
Anal Chem ; 93(48): 16273-16281, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813702

RESUMO

Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.


Assuntos
Influenza Humana , Amantadina/farmacologia , Antivirais/farmacologia , Humanos , Bicamadas Lipídicas , Proteínas da Matriz Viral
7.
Bioconjug Chem ; 32(11): 2432-2438, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730351

RESUMO

This work describes the development of phenyl diazenyl piperidine triazene derivatives that can be activated to release aryl diazonium ions for labeling of proteins using light. These probes show marked bench stability at room temperature and can be photoisomerized via low-intensity UVA irradiation at physiological pH. Upon isomerization, the triazenes are rendered more basic and readily protonate to release reactive aryl diazonium ions. It was discovered that the intensity and duration of the UV light was essential to the observed diazonium ion reactivity in competition with the traditionally observed photolytic radical pathways. The combination of their synthetic efficiency coupled with their overall stability makes triazenes an attractive candidate for use in bioconjugation applications. Bioorthogonal handles on the triazenes are used to demonstrate the ease by which proteins can be modified.


Assuntos
Processamento de Proteína Pós-Traducional
8.
Org Lett ; 23(5): 1851-1855, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570414

RESUMO

Aryl diazonium ions are important in synthesis and chemical biology, and the acid-labile triazabutadiene can protect this handle for future use. We report a Suzuki coupling strategy that is compatible with the triazabutadiene scaffold, expanding the scope of synthetically available triazabutadienes. Shown herein, the triazabutadiene scaffold remains intact and reactive after coupling, as demonstrated by releasing the aryl diazonium ion to label a tyrosine-rich model protein.


Assuntos
Compostos de Diazônio/química , Íons/química , Proteínas/química , Estrutura Molecular
9.
Bioconjug Chem ; 32(2): 254-258, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33492934

RESUMO

Aryl diazonium ions have long been used in bioconjugation due to their reactivity toward electron-rich aryl residues, such as tyrosine. However, their utility in biological systems has been restricted due to the requirement of harsh conditions for their generation in situ, as well as limited hydrolytic stability. Previous work describing a scaffold known as triazabutadiene (TBD) has shown the ability to protect aryl diazonium ions allowing for increased synthetic utility, as well as triggered release under biologically relevant conditions. Herein, we describe the synthesis and application of a novel TBD, capable of installation of a cyclooctyne on protein surfaces for later use of copper-free click reactions involving functional azides. The probe shows efficient protein labeling across a wide pH range that can be accomplished in a convenient and timely manner. Orthogonality of the cyclooctyne modification was showcased by labeling a model protein in the presence of hen egg proteins, using an azide-containing fluorophore. We further confirmed that the azobenzene modification can be cleaved using sodium dithionite treatment.


Assuntos
Butadienos/química , Química Click , Cobre/química , Proteínas/química , Eletroforese em Gel de Poliacrilamida
10.
bioRxiv ; 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511378

RESUMO

A novel coronavirus SARS-CoV-2, also called novel coronavirus 2019 (nCoV-19), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.96% as of May 4, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three monomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.

11.
Anal Chem ; 91(22): 14765-14772, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31638377

RESUMO

Noncovalent interactions between biomolecules are critical to their activity. Native mass spectrometry (MS) has enabled characterization of these interactions by preserving noncovalent assemblies for mass analysis, including protein-ligand and protein-protein complexes for a wide range of soluble and membrane proteins. Recent advances in native MS of lipoprotein nanodiscs have also allowed characterization of antimicrobial peptides and membrane proteins embedded in intact lipid bilayers. However, conventional native electrospray ionization (ESI) can disrupt labile interactions. To stabilize macromolecular complexes for native MS, charge reducing reagents can be added to the solution prior to ESI, such as triethylamine, trimethylamine oxide, and imidazole. Lowering the charge acquired during ESI reduces Coulombic repulsion that leads to dissociation, and charge reduction reagents may also lower the internal energy of the ions through evaporative cooling. Here, we tested a range of imidazole derivatives to discover improved charge reducing reagents and to determine how their chemical properties influence charge reduction efficacy. We measured their effects on a soluble protein complex, a membrane protein complex in detergent, and lipoprotein nanodiscs with and without embedded peptides, and used computational chemistry to understand the observed charge-reduction behavior. Together, our data revealed that hydrophobic substituents at the 2 position on imidazole can significantly improve both charge reduction and gas-phase stability over existing reagents. These new imidazole derivatives will be immediately beneficial for a range of native MS applications and provide chemical principles to guide development of novel charge reducing reagents.


Assuntos
Proteínas de Transporte de Cátions/análise , Proteínas de Escherichia coli/análise , Imidazóis/química , Lipoproteínas/análise , Estreptavidina/análise , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/química , Nanoestruturas/análise , Nanoestruturas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletricidade Estática , Estreptavidina/química
12.
Anal Chem ; 91(14): 9284-9291, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251560

RESUMO

Antimicrobial peptides (AMPs) are generally cationic and amphipathic peptides that show potential applications to combat the growing threat of antibiotic resistant infections. AMPs are known to interact with bacterial membranes, but their mechanisms of toxicity and selectivity are poorly understood, in part because it is challenging to characterize AMP oligomeric complexes within lipid bilayers. Here, we used native mass spectrometry to measure the stoichiometry of AMPs inserted into lipoprotein nanodiscs with different lipid components. Titrations of increasing peptide concentration and collisional activation experiments reveal that AMPs can exhibit a range of behaviors from nonspecific incorporation into the nanodisc to formation of specific complexes. This new approach to characterizing formation of AMP complexes within lipid membranes will provide unique insights into AMP mechanisms.


Assuntos
Gramicidina/análise , Bicamadas Lipídicas/química , Meliteno/análise , Nanoestruturas/química , Dimiristoilfosfatidilcolina/química , Gramicidina/química , Espectrometria de Massas/métodos , Meliteno/química , Fosfatidilgliceróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...