RESUMO
Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under differential water availability and tested the ability to predict pre-dawn ΨLW (PDΨLW) using spectral data collected hours after pressure chamber measurements on dark-acclimated leaves. ΨLW was measured with a Scholander pressure chamber. Leaf reflectance was collected at one or both of two time points: immediately (ΨLW) and ~5 h after pressure chamber measurements (PDΨLW). Predictive models were constructed using partial least-squares regression. Model performance was evaluated using coefficient of determination (R2), root-mean-square error (RMSE), bias, and the percent RMSE of the data range (%RMSE). ΨLW and PDΨLW were well predicted using spectroscopic models and successfully estimated a wide variation in ΨLW (light- or dark-acclimated leaves) as well as PDΨLW (dark-acclimated leaves only). Mean ΨLWR2, RMSE and bias values were 0.65, 0.51 MPa and 0.09, respectively, with a %RMSE between 8% and 20%, while mean PDΨLWR2, RMSE and bias values were 0.60, 0.44 MPa and 0.01, respectively, with a %RMSE between 9% and 20%. Estimates of PDΨLW produced similar statistical outcomes when analyzing treatment effects on PDΨLW as those found using reference pressure chamber measurements. These findings highlight a promising approach to evaluate plant responses to environmental change by providing rapid measurements that can be used to estimate plant water status as well as demonstrating that spectroscopic measurements can be used as a surrogate for standard, reference measurements in a statistical framework.
Assuntos
Botânica/métodos , Secas , Folhas de Planta/fisiologia , Quercus/fisiologia , Análise Espectral/métodos , Geografia , Honduras , Fisiologia/métodosRESUMO
Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric µ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity.