Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(41): 11417-11428, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886100

RESUMO

To unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) trans-acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand 3IL state to the desired charge-separated 3CSS state. We observe two surprising effects of an increased strength of the acceptor in NDI vs. NAP: a ca. 70-fold slow-down of the 3CSS formation-(971 ps)-1vs. (14 ps)-1, and a longer lifetime of the 3CSS (5.9 vs. 1 ns); these are attributed to differences in the driving force ΔGet, and to distance dependence. The 100-fold increase in the rate of intersystem crossing-to sub-500 fs-by the stronger acceptor highlights the role of delocalisation across the heavy-atom containing bridge in this process. The close proximity of several excited states allows one to control the yield of 3CSS from ∼100% to 0% by solvent polarity. The new DBAs offer a versatile platform for investigating the role of bridge vibrations as a tool to control excited state dynamics.

2.
Chem Commun (Camb) ; 59(87): 13014-13017, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37831010

RESUMO

Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.


Assuntos
Bactérias , Cobamidas , Fotoquímica
3.
Chem Sci ; 14(27): 7524-7536, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449080

RESUMO

Knowledge of protein dynamics is fundamental to the understanding of biological processes, with NMR and 2D-IR spectroscopy being two of the principal methods for studying protein dynamics. Here, we combine these two methods to gain a new understanding of the complex mechanism of a cytokine:receptor interaction. The dynamic nature of many cytokines is now being recognised as a key property in the signalling mechanism. Interleukin-17s (IL-17) are proinflammatory cytokines which, if unregulated, are associated with serious autoimmune diseases such as psoriasis, and although there are several therapeutics on the market for these conditions, small molecule therapeutics remain elusive. Previous studies, exploiting crystallographic methods alone, have been unable to explain the dramatic differences in affinity observed between IL-17 dimers and their receptors, suggesting there are factors that cannot be fully explained by the analysis of static structures alone. Here, we show that the IL-17 family of cytokines have varying degrees of flexibility which directly correlates to their receptor affinities. Small molecule inhibitors of the cytokine:receptor interaction are usually thought to function by either causing steric clashes or structural changes. However, our results, supported by other biophysical methods, provide evidence for an alternate mechanism of inhibition, in which the small molecule rigidifies the protein, causing a reduction in receptor affinity. The results presented here indicate an induced fit model of cytokine:receptor binding, with the more flexible cytokines having a higher affinity. Our approach could be applied to other systems where the inhibition of a protein-protein interaction has proved intractable, for example due to the flat, featureless nature of the interface. Targeting allosteric sites which modulate protein dynamics, opens up new avenues for novel therapeutic development.

4.
J Chem Phys ; 158(11): 114201, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948842

RESUMO

Solid, powdered samples are often prepared for infrared (IR) spectroscopy analysis in the form of compressed pellets. The intense scattering of incident light by such samples inhibits applications of more advanced IR spectroscopic techniques, such as two-dimensional (2D)-IR spectroscopy. We describe here an experimental approach that enables the measurement of high-quality 2D-IR spectra from scattering pellets of zeolites, titania, and fumed silica in the OD-stretching region of the spectrum under flowing gas and variable temperature up to ∼500 ◦C. In addition to known scatter suppression techniques, such as phase cycling and polarization control, we demonstrate how a bright probe laser beam comparable in strength with the pump beam provides effective scatter suppression. The possible nonlinear signals arising from this approach are discussed and shown to be limited in consequence. In the intense focus of 2D-IR laser beams, a free-standing solid pellet may become elevated in temperature compared with its surroundings. The effects of steady state and transient laser heating effects on practical applications are discussed.

5.
Appl Spectrosc ; 74(6): 720-727, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32114769

RESUMO

Time-resolved temperature-jump infrared absorption spectroscopy at a 0.5 to 1 kHz repetition rate is presented. A 1 kHz neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pumping an optical parametric oscillator provided >70 µJ, 3.75 µm pump pulses, which delivered a temperature jump via excitation of the O-D stretch of a D2O solution. A 10 kHz train of mid-infrared probe pulses was used to monitor spectral changes following the temperature jump. Calibration with trifluoroacetic acid solution showed that a temperature jump of 10 K lasting for tens of microseconds was achieved, sufficient to observe fast processes in functionally relevant biomolecular mechanisms. Modeling of heating profiles across ≤10 µm path length cells and subsequent cooling dynamics are used to describe the initial <100 ns cooling at the window surface and subsequent, >10 µs cooling dynamics of the bulk solution.

6.
Sci Rep ; 5: 18486, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26691010

RESUMO

In this study we describe a new methodology to physically probe individual complexes formed between proteins and DNA. By combining nanoscale, high speed physical force measurement with sensitive fluorescence imaging we investigate the complex formed between the prokaryotic DNA repair protein UvrA2 and DNA. This approach uses a triangular, optically-trapped "nanoprobe" with a nanometer scale tip protruding from one vertex. By scanning this tip along a single DNA strand suspended between surface-bound micron-scale beads, quantum-dot tagged UvrA2 molecules bound to these '"DNA tightropes" can be mechanically interrogated. Encounters with UvrA2 led to deflections of the whole nanoprobe structure, which were converted to resistive force. A force histogram from all 144 detected interactions generated a bimodal distribution centered on 2.6 and 8.1 pN, possibly reflecting the asymmetry of UvrA2's binding to DNA. These observations successfully demonstrate the use of a highly controllable purpose-designed and built synthetic nanoprobe combined with fluorescence imaging to study protein-DNA interactions at the single molecule level.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , DNA/metabolismo , Nanopartículas/química , Pinças Ópticas , Pontos Quânticos/metabolismo , Coloração e Rotulagem , Soluções
7.
J Phys Chem A ; 117(50): 13388-98, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23964958

RESUMO

Transient absorption spectroscopy is used to follow the reactive intermediates involved in the first steps in the photochemistry initiated by ultraviolet (266-nm wavelength) excitation of solutions of 1,5-hexadiene, isoprene, and 2,3-dimethylbut-2-ene in carbon tetrachloride or chloroform. Ultraviolet and visible bands centered close to 330 and 500 nm in both solvents are assigned respectively to a charge transfer band of Cl-solvent complexes and the strong absorption band of a higher energy isomeric form of the solvent molecules (iso-CCl3-Cl or iso-CHCl2-Cl). These assignments are supported by calculations of electronic excitation energies. The isomeric forms have significant contributions to their structures from charge-separated resonance forms and offer a reinterpretation of previous assignments of the carriers of the visible bands that were based on pulsed radiolysis experiments. Kinetic analysis demonstrates that the isomeric forms are produced via the Cl-solvent complexes. Addition of the unsaturated hydrocarbons provides a reactive loss channel for the Cl-solvent complexes, and reaction radii and bimolecular rate coefficients are derived from analysis using a Smoluchowski theory model. For reactions of Cl with 1,5-hexadiene, isoprene, and 2,3-dimethylbut-2-ene in CCl4, rate coefficients at 294 K are, respectively, (8.6 ± 0.8) × 10(9), (9.5 ± 1.6) × 10(9), and (1.7 ± 0.1) × 10(10) M(-1) s(-1). The larger reaction radius and rate coefficient for 2,3-dimethylbut-2-ene are interpreted as evidence for an H-atom abstraction channel that competes effectively with the channel involving addition of a Cl-atom to a C═C bond. However, the addition mechanism appears to dominate the reactions of 1,5-hexadiene and isoprene. Two-photon excited CCl4 or CHCl3 can also ionize the diene or alkene solute.

8.
Inorg Chem ; 50(13): 6122-34, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21650203

RESUMO

Re(I) carbonyl-diimine complexes [Re(L-AA)(CO)(3)(N,N)](+) (N,N = bpy, phen) containing an aromatic amino acid (AA), phenylalanine (Phe), tyrosine (Tyr), or tryptophan (Trp), linked to Re by a pyridine-amido or imidazole-amido ligand L have been synthesized and their excited-state properties investigated by nanosecond time-resolved IR (TRIR) and emission spectroscopy. Near-UV optical excitation populates a Re(I)(CO)(3)→N,N (3)MLCT excited state *[Re(II)(L-AA)(CO)(3)(N,N(•-))](+). Decay to the ground state (50-300 ns lifetime) is the only excited-state deactivation process observed in the case of Phe and Tyr complexes, whereas the Trp-containing species undergo a Trp(indole)→*Re(II) electron transfer (ET) producing a charge-separated (CS) state, [Re(I)(L-Trp(•+))(CO)(3)(N,N(•-))](+). The ET occurs with a 8-40 ns lifetime depending on L, N,N, and the solvent. The CS state is characterized by ν(CO) IR bands shifted to lower wavenumbers from their respective ground-state positions and two bands at 1278 and 1497 cm(-1) tentatively attributed to Trp(•+). The amido bridge is affected by both the MLCT excitation and the subsequent ET, manifested by the shifts and intensity changes of the amide-I IR band at about 1680 cm(-1). The CS state decays to the ground state by a N,N(•-)→Trp(•+) back-ET the rates of which are comparable to those of the forward ET, 30-60 ns. This study independently demonstrates that Trp can act as an electron-hopping intermediate in photodriven ET systems based on Re-labeled proteins and supramolecules. Photoinduced ET in Trp-containing Re complexes also can be used to generate Trp(•+) and investigate its spectral properties and reactivity.


Assuntos
Compostos Organometálicos/química , Triptofano/química , Monóxido de Carbono/química , Imidazóis/química , Iminas/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Fenilalanina/química , Processos Fotoquímicos , Piridinas/química , Teoria Quântica , Rênio/química , Estereoisomerismo , Tirosina/química
9.
Appl Spectrosc ; 63(1): 57-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19146719

RESUMO

Time-resolved infrared vibrational spectroscopy is a structurally sensitive probe of the excited-state properties of matter. The technique has found many applications in the study of molecules in dilute solution phase but has rarely been applied to crystalline samples. We report on the use of a sensitive pump-probe time-resolved infrared spectrometer and sample handling techniques for studies of the ultrafast excited-state dynamics of crystalline materials. The charge transfer excited states of crystalline metal carbonyls and the proton transfer of dihydroxyquinones are presented and compared with the solution phase.

10.
Chemistry ; 14(23): 6912-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18604857

RESUMO

Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.


Assuntos
2,2'-Dipiridil/química , Compostos Organometálicos/química , Compostos de Piridínio/química , Rênio/química , Eletroquímica , Isomerismo , Estrutura Molecular , Oxirredução , Fotoquímica , Espectrofotometria , Análise Espectral Raman , Fatores de Tempo
11.
Science ; 320(5884): 1760-2, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18583608

RESUMO

Energy flow in biological structures often requires submillisecond charge transport over long molecular distances. Kinetics modeling suggests that charge-transfer rates can be greatly enhanced by multistep electron tunneling in which redox-active amino acid side chains act as intermediate donors or acceptors. We report transient optical and infrared spectroscopic experiments that quantify the extent to which an intervening tryptophan residue can facilitate electron transfer between distant metal redox centers in a mutant Pseudomonas aeruginosa azurin. Cu(I) oxidation by a photoexcited Re(I)-diimine at position 124 on a histidine(124)-glycine(123)-tryptophan(122)-methionine(121) beta strand occurs in a few nanoseconds, fully two orders of magnitude faster than documented for single-step electron tunneling at a 19 angstrom donor-acceptor distance.


Assuntos
Azurina/química , Cobre/química , Elétrons , Triptofano/química , Cristalografia por Raios X , Transferência de Energia , Cinética , Ligantes , Modelos Químicos , Proteínas Mutantes/química , Oxirredução , Fenilalanina/química , Pseudomonas aeruginosa/química , Rênio/química , Análise Espectral , Termodinâmica , Tirosina/química
12.
Inorg Chem ; 47(10): 4236-42, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18416548

RESUMO

The character and dynamics of the low-lying excited states of [Ru(X)(X')(CO)2(iPr-dab)] (X=X'=Cl or I; X=Me, X'=I; X=SnPh3, X'=Cl; iPr-dab=N, N'-diisopropyl-1,4-diazabutadiene) were studied experimentally by pico- and nanosecond time-resolved IR spectroscopy (TRIR) and (for X=X'=Cl or I) computationally using density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques. The lowest allowed electronic transition occurs between 390 and 460 nm and involves charge transfer from the Ru(halide)(CO) 2 unit to iPr-dab, denoted (1)MLCT/XLCT (metal-to-ligand/halide-to-ligand charge transfer). The lowest triplet state is well modeled by UKS-DFT-CPCM calculations, which quite accurately reproduce the excited-state IR spectrum in the nu(CO) region. It has a (3)MLCT/XLCT character with an intraligand (iPr-dab) (3)pipi* admixture. TRIR spectra of the lowest triplet excited state show two nu(CO) bands that are shifted to higher energies from their corresponding ground-state positions. The magnitude of this upward shift increases as a function of the ligands X and X' [(I)2 < (Sn)(Cl) < (Me)(I) < (Cl)2] and reveals increasing contribution of the Ru(CO)2-->dab MLCT character to the excited state. The lowest triplet state of [Ru(Cl)2(CO)2(iPr-dab)] undergoes a approximately 10 ps relaxation that is followed by CO dissociation, producing cis(CO,CH 3CN),trans(Cl,Cl)-[Ru(Cl)2(CH 3CN)(CO)(iPr-dab)] with a unity quantum yield and 7.2 ns lifetime and without any observable intermediate. To our knowledge, this is the first example of a "slow" CO dissociation from a thermally equilibrated triplet charge-transfer excited state.


Assuntos
2-Propanol/química , Compostos Aza/química , Monóxido de Carbono/química , Cloro/química , Iodo/química , Compostos de Rutênio/química , Compostos de Estanho/química , Elétrons , Metilação , Modelos Moleculares , Estrutura Molecular , Fotoquímica , Espectrofotometria Infravermelho , Fatores de Tempo
13.
Biophys J ; 90(8): 2978-86, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16443659

RESUMO

Lignin radicals are crucial intermediates for lignin biosynthesis in the cell wall of vascular plants. In this work they were for the first time, to our knowledge, selectively observed in wood cell walls by laser-based Kerr-gated resonance Raman spectroscopy, and the observations were supported by density functional theory prediction of their vibrational properties. For dry wood cells a lignin radical Raman band is observed at 1,570 cm(-1) irrespective of species. For wet beech cells they were generated in situ and observed at 1,606 cm(-1). DFT/B3LYP/6-31+G(d) modeling results support that in beech they are formed from syringyl (S) phenolic moieties and in spruce from guaiacyl (G) phenolic moieties. The observed lignin radical band is predicted as G is approximately 1,597 cm(-1) and S is approximately 1,599 cm(-1), respectively, and is assigned the (Wilson notation) nu(8a) phenyl ring mode. The RR band probes lignin radical properties, e.g., spin density distribution, and these respond to charge polarization or hydrogen bonding to proximate water molecules. These observations can be crucial for an understanding of the factors that control cell wall structure during biosynthesis of vascular plants and demonstrate the unique potential of RR spectroscopy of lignin radicals.


Assuntos
Parede Celular/química , Fagus/química , Lignina/química , Picea/química , Radicais Livres/química , Ligação de Hidrogênio , Lacase/química , Análise Espectral Raman , Água/química
14.
J Bone Miner Res ; 20(11): 1968-72, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16234970

RESUMO

UNLABELLED: With fragility fractures increasing as the population ages, there is a need for improved means to estimate risk of fracture. We recorded Raman spectra of both the mineral and organic phases of bone transcutaneously, a technology with potential to enhance bone quality and fracture risk assessment. INTRODUCTION: The current "gold standard" assessment of bone quality is BMD determined by DXA. However, this accounts for only 60-70% of bone strength. X-rays are absorbed by the mineral phase of bone, whereas the organic phase remains essentially invisible; however, bone strength is critically dependent on both phases. We report, for the first time, a Raman spectroscopic technique that analyses both phases of bone beneath unbroken skin by eliminating spectral components of overlying tissues. MATERIALS AND METHODS: We used an 800-nm laser (1-kHz, 1-ps pulses) with a synchronized 4-ps Kerr gate with variable picosecond delay that effectively shuttered out photons from overlying tissues. We measured bone Raman spectra at a point 2 mm above the carpus from two mouse genotypes with extreme differences in bone matrix quality: wildtype and oim/oim (matched for age, sex, and weight). Typical depth was 1.1 mm. We repeated the measurements with overlying tissues removed down to bone. Oim/oim mice produce only homotrimeric collagen, which results in poorly mineralized bone tissue. RESULTS: The main spectral features were present from both bone phases. The spectral bands were in similar ratios when measured through the skin or directly from bone (in both genotypes). The band of the mineral phase (phosphate nu1) was smaller in oim/oim mice when measured directly from bone and through skin. The band associated with a particular vibrational mode of organic phase collagen (CH2 wag) showed a frequency shift between the genotypes. CONCLUSIONS: This novel technique allowed us, for the first time, to make objective transcutaneous spectral measurements of both the mineral and the organic phases of bones and distinguish between normal and unhealthy bone tissue. After further optimization, this technology may help improve fracture risk assessments and open opportunities for screening in anticipation of the predicted increase in fragility fractures.


Assuntos
Osso e Ossos/química , Análise Espectral Raman/métodos , Animais , Apatitas/análise , Osso e Ossos/patologia , Colágeno/análise , Colágeno/genética , Técnicas e Procedimentos Diagnósticos , Genótipo , Camundongos , Camundongos Mutantes , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia
15.
Macromol Biosci ; 5(8): 743-52, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-16088976

RESUMO

Resonance Raman (RR) spectroscopy, combined with Kerr gated fluorescence rejection in the time domain, has recently elucidated lignin structure with unique sensitivity and selectivity. This promises structural studies of fluorescent natural macromolecules, such as lignin, which were previously not possible. Such studies rely on an improved understanding of the RR spectral behavior of lignin, which is today scarcely understood. We explain for the first time this behavior by a semi-empirical theory, and observe its pertinent features for lignin in vascular plants. We have used well-defined oxidative treatments as means of probing lignin structural elements, and show that RR sensitivity and selectivity depend crucially on excitation wavelength. Through the theory we relate these results to basic structural aspects of lignin. Spectra obtained by blue light laser excitation (400 nm) are dominated by low redox potential syringyl lignin groups, whereas lower photon energy (500 nm) decreases the selectivity markedly. RR bands depend on molecular structure but also on molecular environment. Thus charge transfer donor-acceptor interactions within lignin reduce the intensity of bands associated with electron rich moieties. New possibilities for basic and selective structural information on fluorescent natural materials, such as lignin, have thus appeared.


Assuntos
Lignina/química , Análise Espectral Raman , Estrutura Molecular , Análise Espectral Raman/métodos
16.
Analyst ; 130(4): 472-3, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15776155

RESUMO

A commercially available fluorimeter with a white light source is used to detect surface enhanced resonance Raman scattering (SERRS). This approach allows facile tunability of the excitation source for SERRS.

17.
Inorg Chem ; 43(23): 7380-8, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15530088

RESUMO

Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.

18.
Inorg Chem ; 43(5): 1723-34, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-14989665

RESUMO

The characters, dynamics, and relaxation pathways of low-lying excited states of the complexes [W(CO)(5)L] [L = 4-cyanopyridine (pyCN) and piperidine (pip)] were investigated using theoretical and spectroscopic methods. DFT calculations revealed the delocalized character of chemically and spectroscopicaly relevant molecular orbitals and the presence of a low-lying manifold of CO pi-based unoccupied molecular orbitals. Traditional ligand-field arguments are not applicable. The lowest excited states of [W(CO)(5)(pyCN)] are W --> pyCN MLCT in character. They are closely followed in energy by W --> CO MLCT states. Excitation at 400 or 500 nm populates the (3)MLCT(pyCN) excited state, which was characterized by picosecond time-resolved IR and resonance Raman spectroscopy. Excited-state vibrations were assigned using DFT calculations. The (3)MLCT(pyCN) excited state is initially formed highly excited in low-frequency vibrations which cool with time constants between 1 and 20 ps, depending on the excitation wavelength, solvent, and particular high-frequency nu(CO) or nu(CN) mode. The lowest excited states of [W(CO)(5)(pip)] are W --> CO MLCT, as revealed by TD-DFT interpretation of a nanosecond time-resolved IR spectrum that was measured earlier in a low-temperature glass (Johnson, F. P. A.; George, M. W.; Morrison, S. L.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1995, 391-393). MLCT(CO) excitation involves transfer of electron density from the W atom and, to a lesser extent, the trans CO to the pi orbitals of the four cis CO ligands. Optical excitation into MLCT(CO) transition of either complex in fluid solution triggers femtosecond dissociation of a W-N bond, producing [W(CO)(5)(solvent)]. It is initially vibrationally excited both in nu(CO) and anharmonicaly coupled low-frequency modes. Vibrational cooling occurs with time constants of 16-22 ps while the intramolecular vibrational energy redistribution from the v = 1 nu(CO) modes is much slower, 160-220 ps. No LF excited states have been found for the complexes studied in a spectroscopically relevant range up to 6-7 eV. It follows that spectroscopy, photophysics, and photochemistry of [W(CO)(5)L] and related complexes are well described by an interplay of close-lying MLCT(L) and MLCT(CO) excited states. The high-lying LF states play only an indirect photochemical role by modifying potential energy curves of MLCT(CO) states, making them dissociative.

19.
Photochem Photobiol Sci ; 2(11): 1107-17, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14690222

RESUMO

The fluorescence spectra of acidified aqueous solutions of tetracycline (tcH3+) exhibit three components with slightly different degrees of anisotropy: the 'blue' component (lambdad approximately equal to 475 nm) decays on the timescale of a few picoseconds; the second, most intense component (lambdad approximately equal to 530 nm) shows decay times of about 25 (H3O+) and 70 ps (D3O+); the third component (lambdad approximately equal to 650 nm) is longer lived (tau approximately equal to 200 ps). All three fluorescence components appear quasi-instantaneously, thus providing evidence that the relaxation processes which give rise to the unusually large Stokes shifts occur on a (sub-)picosecond timescale. The effect of H/D exchange suggests that these relaxation processes involve excited-state intramolecular proton transfer (ESIPT) of OH10 and/or OH12, but does not exclude a change in the hydrogen-bonding pattern to the solvent molecules. The low overall fluorescence yield of the fully protonated form must be correlated to the presence of a very fast decaying species. In alkaline aqueous solution, the fluorescence of the dianion (tc2-) essentially comprises two components; the decay time of the stronger, shorter-lived component is about 30 ps, that of the weaker, longer-lived one about 160 ps. The relative amplitude of the latter is larger at pH 11 than at pH 8.5, in accordance with the increase in the steady-state fluorescence intensity upon increasing the pH from 8.5 to 11. Complexation of the dianion with divalent metal ions like Mg2+ or Ca2+ leads to a strong enhancement of the steady-state fluorescence. In the time-resolved spectra, the decay time of the major fluorescence component exhibits approximately a five-fold increase in comparison to the major component of the dianion. It is about 150 ps in both types of complexes. The decay times of the minor component are increased to about 500 (Mg2+) and 320 ps (Ca2+). The absence of the ultra-fast component in the fluorescence of the dianion and its metal complexes provides evidence that a reaction of OH 12 must be responsible for the ultra-fast fluorescence component in tcH3+. The existence of a component with a lifetime of several tens of picoseconds in all samples suggests the involvement of hydrogen bonding at OH10 during the formation of the emitting species. DFT calculations for the isolated molecule provide evidence that ESIPT is indeed an energetically allowed relaxation process for those isomers that have only one intramolecular hydrogen bond to O11. The ESIPT process yields primary photoproducts that should emit at much longer wavelengths, thereby explaining the unusually large fluorescence Stokes shift.


Assuntos
Cálcio/química , Magnésio/química , Tetraciclina/química , Antibacterianos/química , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Cinética , Soluções , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...