Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37628701

RESUMO

Gut microbiomes of fish species consist of thousands of bacterial taxa that interact among each other, their environment, and the host. These complex networks of interactions are regulated by a diverse range of factors, yet little is known about the hierarchy of these interactions. Here, we introduce SAMBA (Structure-Learning of Aquaculture Microbiomes using a Bayesian Approach), a computational tool that uses a unified Bayesian network approach to model the network structure of fish gut microbiomes and their interactions with biotic and abiotic variables associated with typical aquaculture systems. SAMBA accepts input data on microbial abundance from 16S rRNA amplicons as well as continuous and categorical information from distinct farming conditions. From this, SAMBA can create and train a network model scenario that can be used to (i) infer information of how specific farming conditions influence the diversity of the gut microbiome or pan-microbiome, and (ii) predict how the diversity and functional profile of that microbiome would change under other variable conditions. SAMBA also allows the user to visualize, manage, edit, and export the acyclic graph of the modelled network. Our study presents examples and test results of Bayesian network scenarios created by SAMBA using data from a microbial synthetic community, and the pan-microbiome of gilthead sea bream (Sparus aurata) in different feeding trials. It is worth noting that the usage of SAMBA is not limited to aquaculture systems as it can be used for modelling microbiome-host network relationships of any vertebrate organism, including humans, in any system and/or ecosystem.


Assuntos
Microbiota , Dourada , Animais , Humanos , Teorema de Bayes , RNA Ribossômico 16S/genética , Aprendizagem , Microbiota/genética , Aquicultura
2.
Biology (Basel) ; 11(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36552254

RESUMO

Fish genetically selected for growth (GS) and reference (REF) fish were fed with CTRL (15% FM, 5-7% FO) or FUTURE (7.5% FM, 10% poultry meal, 2.2% poultry oil + 2.5% DHA-algae oil) diets during a 12-months production cycle. Samples from initial (t0; November 2019), intermediate (t1; July 2020) and final (t2; November 2020) sampling points were used for Illumina 16S rRNA gene amplicon sequencing of the adherent microbiota of anterior intestine (AI). Samples from the same individuals (t1) were also used for the gene expression profiling of AI by RNA-seq, and subsequent correlation analyses with microbiota abundances. Discriminant analyses indicated the gut bacterial succession along the production cycle with the proliferation of some valuable taxa for facing seasonality and different developmental stages. An effect of genetic background was evidenced along time, decreasing through the progression of the trial, namely the gut microbiota of GS fish was less influenced by changes in diet composition. At the same time, these fish showed wider transcriptomic landmarks in the AI to cope with these changes. Our results highlighted an enhanced intestinal sphingolipid and phospholipid metabolism, epithelial turnover and intestinal motility in GS fish, which would favour their improved performance despite the lack of association with changes in gut microbiota composition. Furthermore, in GS fish, correlation analyses supported the involvement of different taxa with the down-regulated expression of pro-inflammatory markers and the boosting of markers of extracellular remodelling and response to bacterium. Altogether, these findings support the combined action of the gut microbiome and host transcriptionally mediated effects to preserve and improve gut health and function in a scenario of different growth performance and potentiality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...