Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 872: 162062, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804973

RESUMO

Oil palm plantations in Southeast Asia are the largest supplier of palm oil products and have been rapidly expanding in the last three decades even in peat-swamp areas. Oil palm plantations on peat ecosystems have a unique water management system that lowers the water table and, thus, may yield indirect N2O emissions from the peat drainage system. We conducted two seasons of spatial monitoring for the dissolved N2O concentrations in the drainage and adjacent rivers of palm oil plantations on peat swamps in Sarawak, Malaysia, to evaluate the magnitude of indirect N2O emissions from this ecosystem. In both the dry and wet seasons, the mean and median dissolved N2O concentrations exhibited over-saturation in the drainage water, i.e., the oil palm plantation drainage may be a source of N2O to the atmosphere. In the wet season, the spatial distribution of dissolved N2O showed bimodal peaks in both the unsaturated and over-saturated concentrations. The bulk δ15N of dissolved N2O was higher than the source of inorganic N in the oil palm plantation (i.e., N fertilizer and soil organic nitrogen) during both seasons. An isotopocule analysis of the dissolved N2O suggested that denitrification was a major source of N2O, followed by N2O reduction processes that occurred in the drainage water. The δ15N and site preference mapping analysis in dissolved N2O revealed that a significant proportion of the N2O produced in peat and drainage is reduced to N2 before being released into the atmosphere.

2.
DNA Res ; 30(1)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454681

RESUMO

Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.


Assuntos
Archaea , Temperatura Alta , Temperatura , Filogenia , Archaea/genética , Archaea/metabolismo , Genômica
3.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289456

RESUMO

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Assuntos
Óxido Nitroso , Calibragem , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Padrões de Referência
4.
Environ Pollut ; 287: 117494, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182387

RESUMO

Nitrous oxide (N2O), an ozone-depleting greenhouse gas, is generally produced by soil microbes, particularly NH3 oxidizers and denitrifiers, and emitted in large quantities after N fertilizer application in croplands. N2O can be produced via multiple processes, and reduced, with the involvement of more diverse microbes with different physiological constraints than previously thought; therefore, there is a lack of consensus on the production processes and microbes involved under different agricultural practices. In this study, multiple approaches were applied, including N2O isotopocule analyses, microbial gene transcript measurements, and selective inhibition assays, to revisit the involvement of NH3 oxidizers and denitrifiers, including the previously-overlooked taxa, in N2O emission from a cropland, and address the biological and environmental factors controlling the N2O production processes. Then, we synthesized the results from those approaches and revealed that the overlooked denitrifying bacteria and fungi were more involved in N2O production than the long-studied ones. We also demonstrated that the N2O production processes and soil microbes involved were different based on fertilization practices (plowing or surface application) and fertilization types (manure or urea). In particular, we identified the following intensified activities: (1) N2O production by overlooked denitrifying fungi after manure fertilization onto soil surface; (2) N2O production by overlooked denitrifying bacteria and N2O reduction by long-studied N2O-reducing bacteria after manure fertilization into the plowed layer; and (3) N2O production by NH3-oxidizing bacteria and overlooked denitrifying bacteria and fungi when urea fertilization was applied into the plowed layer. We finally propose the conceptual scheme of N flow after fertilization based on distinct physiological constraints among the diverse NH3 oxidizers and denitrifiers, which will help us understand the environmental context-dependent N2O emission processes.


Assuntos
Óxido Nitroso , Solo , Amônia , Produtos Agrícolas , Desnitrificação , Nitrificação , Óxido Nitroso/análise , Microbiologia do Solo
5.
Water Res ; 187: 116417, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987292

RESUMO

Although eutrophic urban rivers receiving loads of wastewater represent an important anthropogenic source of N2O, little is known as to how temperature and other environmental factors affect temporal variations in N2O emissions from wastewater treatment plants (WWTPs) and downstream rivers. Two-year monitoring at a WWTP and five river sites was complemented with available water quality data, laboratory incubations, and stable isotopes in N2O and NO3- to explore how wastewater effluents interact with seasonal changes in environmental conditions to affect downstream metabolic processes and N2O emissions from the lower Han River traversing the megacity Seoul. Water quality data from four WWTPs revealed significant inverse relationships between water temperature and the concentrations or fluxes of total N (TN) in effluents. Increased TN fluxes at low temperatures concurred with N2O surges in WWTP effluents and downstream rivers, counteracting the long-term decline in TN fluxes resulting from enhanced wastewater treatments. Incubation experiments with river water and sediment, in isolation or combined, implied the hypoxic winter sediment as a large source of N2O, whereas the anoxic summer sediment produced a smaller amount of N2O only when it was added with oxic water. For both WWTP effluents and downstream rivers, bulk isotope ratios and intramolecular distribution of 15N in N2O distinctly differed between summer and winter, indicating incomplete denitrification in the hypoxic sediment at low temperatures as a primary downstream source adding to WWTP-derived N2O. Winter surges in wastewater TN and sediment N2O release highlight temperature variability as an underappreciated control over anthropogenic N2O emissions from increasingly urbanized river systems worldwide.


Assuntos
Óxido Nitroso , Purificação da Água , Óxido Nitroso/análise , Rios , Temperatura , Águas Residuárias/análise
6.
Rapid Commun Mass Spectrom ; 34(20): e8858, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32548934

RESUMO

The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.

7.
Rapid Commun Mass Spectrom ; 34(15): e8836, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430945

RESUMO

RATIONALE: Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N2 O) is an underdetermined problem in environmental sciences due to the multiple source and sink processes involved, which complicate mitigation of its emissions. Measuring the doubly isotopically substituted molecules (isotopocules) of N2 O can add new opportunities to fingerprint and constrain its cycle. METHODS: We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N2 O, including three doubly substituted species - so called "clumped isotopes". For the absolute quantification of individual isotopocule abundances, we propose a new calibration scheme that combines thermal equilibration of a working standard gas with a direct mole fraction-based approach. RESULTS: The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N2 O molecule. CONCLUSIONS: Our study represents a new methodological basis for the measurements of both singly substituted and clumped N2 O isotopes. It has a high potential to stimulate future research in the N2 O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.

8.
Nat Clim Chang ; 9(12): 954-958, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31857827

RESUMO

Ocean acidification induced by the increase of anthropogenic CO2 emissions has a profound impact on marine organisms and biogeochemical processes.1 The response of marine microbial activities to ocean acidification might play a crucial role in the future evolution of air-sea fluxes of biogenic gases such as nitrous oxide (N2O), a strong greenhouse gas and the dominant stratospheric ozone-depleting substance.2 Here, we examine the response of N2O production from nitrification to acidification in a series of incubation experiments conducted in subtropical and subarctic western North Pacific. The experiments show that, when pH was reduced, the N2O production rate during nitrification measured at subarctic stations increased significantly whereas nitrification rates remained stable or decreased. Contrary to what was previously thought, these results suggest that the effect of ocean acidification on N2O production during nitrification and nitrification rates are likely uncoupled. Collectively these results suggest that, if seawater pH continues to decline at the same rate, ocean acidification could increase the marine N2O production during nitrification in subarctic North Pacific by 185 to 491% by the end of the century.

9.
Sci Rep ; 9(1): 7790, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127146

RESUMO

Nitrous oxide (N2O) contributes to global warming and stratospheric ozone depletion. Although its major sources are regarded as bacterial or archaeal nitrification and denitrification in soil and water, the origins of ubiquitous marine N2O maximum at depths of 100-800 m and N2O dissolved in deeper seawater have not been identified. We examined N2O production processes in the middle and deep sea by analyzing vertical profiles of N2O concentration and isotopocule ratios, abundance ratios of molecules substituted with rare stable isotopes 15N or 18O to common molecules 14N14N16O, in the Atlantic, Pacific, Indian, and Southern oceans. Isotopocule ratios suggest that the N2O concentration maxima is generated by in situ microbial processes rather than lateral advection or diffusion from biologically active sea areas such as the eastern tropical North Pacific. Major production process is nitrification by ammonia-oxidizing archaea (AOA) in the North Pacific although other processes such as bacterial nitrification/denitrification and nitrifier-denitrification also significantly contribute in the equatorial Pacific, eastern South Pacific, Southern Ocean/southeastern Indian Ocean, and tropical South Atlantic. Concentrations of N2O below 2000 m show significant correlation with the water mass age, which supports an earlier report suggesting production of N2O during deep water circulation. Furthermore, the isotopocule ratios suggest that AOA produce N2O in deep waters. These facts indicate that AOA have a more important role in marine N2O production than bacteria and that change in global deep water circulation could affect concentration and isotopocule ratios of atmospheric N2O in a millennium time scale.

10.
Rapid Commun Mass Spectrom ; 33(2): 165-175, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30304571

RESUMO

RATIONALE: Biochar amendments often decrease N2 O gas production from soil, but the mechanisms and magnitudes are still not well characterized since N2 O can be produced via several different microbial pathways. We evaluated the influence of biochar amendment on N2 O emissions and N2 O isotopic composition, including 15 N site preference (SP) under anaerobic conditions. METHODS: An agricultural soil was incubated with differing levels of biochar. Incubations were conducted under anaerobic conditions for 10 days with and without acetylene, which inhibits N2 O reduction to N2 . The N2 O concentrations were measured every 2 days, the SPs were determined after 5 days of incubation, and the inorganic nitrogen concentrations were measured after the incubation. RESULTS: The SP values with acetylene were consistent with N2 O production by bacterial denitrification and those without acetylene were consistent with bacterial denitrification that included N2 O reduction to N2 . There was no effect of biochar on N2 O production in the presence of acetylene between day 3 and day 10. However, in the absence of acetylene, soils incubated with 4% biochar produced less N2 O than soils with no biochar addition. Different amounts of biochar amendment did not change the SP values. CONCLUSIONS: Our study used N2 O emission rates and SP values to understand biochar amendment mechanisms and demonstrated that biochar amendment reduces N2 O emissions by stimulating the last step of denitrification. It also suggested a possible shift in N2 O-reducing microbial taxa in 4% biochar samples.

12.
Rapid Commun Mass Spectrom ; 32(15): 1207-1214, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729051

RESUMO

RATIONALE: Despite a long history and growing interest in isotopic analyses of N2 O, there is a lack of isotopically characterized N2 O isotopic reference materials (standards) to enable normalization and reporting of isotope-delta values. Here we report the isotopic characterization of two pure N2 O gas reference materials, USGS51 and USGS52, which are now available for laboratory calibration (https://isotopes.usgs.gov/lab/referencematerials.html). METHODS: A total of 400 sealed borosilicate glass tubes of each N2 O reference gas were prepared from a single gas filling of a high vacuum line. We demonstrated isotopic homogeneity via dual-inlet isotope-ratio mass spectrometry. Isotopic analyses of these reference materials were obtained from eight laboratories to evaluate interlaboratory variation and provide preliminary isotopic characterization of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and site preference (SP ) values. RESULTS: The isotopic homogeneity of both USGS51 and USGS52 was demonstrated by one-sigma standard deviations associated with the determinations of their δ15 N, δ18 O, δ15 Nα , δ15 Nß and SP values of 0.12 mUr or better. The one-sigma standard deviations of SP measurements of USGS51 and USGS52 reported by eight laboratories participating in the interlaboratory comparison were 1.27 and 1.78 mUr, respectively. CONCLUSIONS: The agreement of isotope-delta values obtained in the interlaboratory comparison was not sufficient to provide reliable accurate isotope measurement values for USGS51 and USGS52. We propose that provisional values for the isotopic composition of USGS51 and USGS52 determined at the Tokyo Institute of Technology can be adopted for normalizing and reporting sample data until further refinements are achieved through additional calibration efforts.

13.
Environ Sci Technol ; 51(24): 14083-14091, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29182319

RESUMO

The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N2O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N2O were surveyed to isotopocule analysis, and its 15N site preference (SP) and δ18O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N2O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N2O production. N2O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ18O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N2O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N2O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N2O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.


Assuntos
Desnitrificação , Esterco , Óxido Nitroso , Bactérias , Compostagem , Microbiologia do Solo
15.
Mass Spectrom Rev ; 36(2): 135-160, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25869149

RESUMO

Natural abundance ratios of isotopocules, molecules that have the same chemical constitution and configuration, but that only differ in isotope substitution, retain a record of a compound's origin and reactions. A method to measure isotopocule ratios of nitrous oxide (N2 O) has been established by using mass analysis of molecular ions and fragment ions. The method has been applied widely to environmental samples from the atmosphere, ocean, fresh water, soils, and laboratory-simulation experiments. Results show that isotopocule ratios, particularly the 15 N-site preference (difference between isotopocule ratios 14 N15 N16 O/14 N14 N16 O and 15 N14 N16 O/14 N14 N16 O), have a wide range that depends on their production and consumption processes. Observational and laboratory studies of N2 O related to biological processes are reviewed and discussed to elucidate complex material cycles of this trace gas, which causes global warming and stratospheric ozone depletion. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:135-160, 2017.


Assuntos
Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Animais , Archaea/química , Bactérias/química , Fungos/química , Humanos , Nitrificação , Isótopos de Nitrogênio/análise , Esgotos/análise , Solo/química , Água/análise
16.
J Environ Radioact ; 166(Pt 3): 436-448, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26872744

RESUMO

A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Modelos Teóricos , Poluentes Radioativos do Solo/análise , Solo/química , Poeira , Japão , Minerais , Tamanho da Partícula , Monitoramento de Radiação
17.
Rapid Commun Mass Spectrom ; 30(24): 2635-2644, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27676138

RESUMO

RATIONALE: Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. METHODS: The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N2 O separation by gas chromatography before N2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. RESULTS: The δ17 O, δ18 O, and Δ17 O values increased with increasing sample size, although the δ15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ18 O, Δ17 O, and δ15 N values, results that are not inferior to those from other systems using gold tube or gold wire. CONCLUSIONS: An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision and sample throughput (23 min per sample on average), and minimal manual treatment. Copyright © 2016 John Wiley & Sons, Ltd.

18.
Rapid Commun Mass Spectrom ; 30(23): 2487-2496, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605461

RESUMO

RATIONALE: In the last few years, the study of N2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope ratio mass spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). METHODS: The ammonium nitrate (NH4 NO3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ Î´15 Nα - δ15 Nß ) and bulk (δ15 Nbulk  = (δ15 Nα  + Î´15 Nß )/2) isotopic composition of N2 O against the international standard for the 15 N/14 N isotope ratio (AIR-N2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH4 NO3 on the N2 O site preference were studied using static and dynamic decomposition techniques. RESULTS: The validity of the NH4 NO3 decomposition technique to link NH4+ and NO3- moiety-specific δ15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N2 O was confirmed. However, the accuracy of this approach for the calibration of δ15 Nα and δ15 Nß values was found to be limited by non-quantitative NH4 NO3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO3- or NH4+ nitrogen atom into the α or ß position of the N2 O molecule. CONCLUSIONS: The study reveals that the completeness and reproducibility of the NH4 NO3 decomposition reaction currently confine the anchoring of N2 O site-specific isotopic composition to the international isotope ratio scale AIR-N2 . The authors suggest establishing a set of N2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. Copyright © 2016 John Wiley & Sons, Ltd.

19.
Water Res ; 102: 147-157, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340816

RESUMO

Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4(+) concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2(-) reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2(-) reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2(-) reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes.


Assuntos
Reatores Biológicos , Óxido Nitroso , Desnitrificação , Processos Heterotróficos , Nitrogênio/metabolismo , Oxirredução
20.
Environ Sci Technol ; 50(7): 3537-44, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967120

RESUMO

We performed laboratory incubation experiments on the degradation of gaseous phase carbonyl sulfide (OCS) by soil bacteria to determine its sulfur isotopic fractionation constants ((34)ε). Incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia, and Cupriavidus isolated from natural soil environments. The (34)ε values determined were -3.67 ± 0.33‰, -3.99 ± 0.19‰, -3.57 ± 0.22‰, and -3.56 ± 0.23‰ for Mycobacterium spp. strains THI401, THI402, THI404, and THI405; -3.74 ± 0.29‰ for Williamsia sp. strain THI410; and -2.09 ± 0.07‰ and -2.38 ± 0.35‰ for Cupriavidus spp. strains THI414 and THI415. Although OCS degradation rates divided by cell numbers (cell-specific activity) were different among strains of the same genus, the (34)ε values for same genus showed no significant differences. Even though the numbers of bacterial species examined were limited, our results suggest that (34)ε values for OCS bacterial degradation depend not on cell-specific activities, but on genus-level biological differences, suggesting that (34)ε values are dependent on enzymatic and/or membrane properties. Taking our (34)ε values as representative for bacterial OCS degradation, the expected atmospheric changes in δ(34)S values of OCS range from 0.5‰ to 0.9‰, based on previously reported decreases in OCS concentrations at Mt. Fuji, Japan. Consequently, tropospheric observation of δ(34)S values for OCS coupled with (34)ε values for OCS bacterial degradation can potentially be used to investigate soil as an OCS sink.


Assuntos
Bactérias/metabolismo , Óxidos de Enxofre/metabolismo , Enxofre/metabolismo , Biodegradação Ambiental , Fracionamento Químico , Japão , Microbiologia do Solo , Isótopos de Enxofre , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...