Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurol ; 271(5): 2207-2215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413464

RESUMO

BACKGROUND: Some people with multiple sclerosis (pwMS) avoid exercise due to overheating. Evidence from a variety of cooling treatments shows benefits for pwMS. OBJECTIVE: Conduct a randomized controlled trial of antipyretic treatment before exercise in pwMS. METHODS: Adults over age 18 diagnosed with relapsing-remitting MS reporting heat sensitivity during exercise were randomly assigned to one of six sequences counterbalancing aspirin, acetaminophen, placebo. At each of three study visits separated by ≥ one week, participants received 650-millograms of aspirin, acetaminophen, or placebo before completing a maximal exercise test. Primary outcomes were body temperature change and total time-to-exhaustion (TTE), secondary outcomes were physiological and patient-reported outcomes (PROs). RESULTS: Sixty participants were enrolled and assigned to treatment sequence; 37 completed ≥ one study visit. After controlling for order effects, we found that body temperature increase was reduced after aspirin (+ 0.006 ± 0.32 degrees Fahrenheit, p < 0.001) and after acetaminophen (+ 0.31 ± 0.35; p = 0.004) compared to placebo (+ 0.68 ± 0.35). TTE after aspirin (331.6 ± 76.6 s) and acetaminophen (578.2 ± 82.1) did not differ significantly from placebo (551.0 ± 78.4; p's > 0.05). Aspirin benefited all secondary outcomes compared to placebo (all p's < 0.001); acetaminophen showed broadly consistent benefits. CONCLUSION: These results support antipyretic treatment as effective for reducing overheating during exercise in pwMS and failed to support antipyretics for increasing TTE in the context of a maximal exercise test. Benefits were shown for physiological markers of exercise productivity and PROs of fatigue, pain, and perceived exertion.


Assuntos
Acetaminofen , Antipiréticos , Aspirina , Exercício Físico , Humanos , Masculino , Feminino , Adulto , Antipiréticos/administração & dosagem , Acetaminofen/administração & dosagem , Aspirina/administração & dosagem , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Método Duplo-Cego , Administração Oral , Teste de Esforço , Resultado do Tratamento
3.
Brain Commun ; 5(6): fcad332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107503

RESUMO

Prediction of disease progression is challenging in multiple sclerosis as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in multiple sclerosis. In a full cohort of 482 multiple sclerosis patients (age: 41.83 ± 11.63 years, 71.57% females), the Expanded Disability Status Scale was used to classify patients into (i) no or mild (Expanded Disability Status Scale <3) versus (ii) moderate or severe disability groups (Expanded Disability Status Scale ≥3). In 363 out of 482 patients, quantitative susceptibility mapping was used to identify paramagnetic rim lesions, which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects as being cognitively preserved or impaired. Network Modification Tool was used to estimate the regional structural disconnectivity due to multiple sclerosis lesions. Discriminative event-based modelling was applied to investigate the sequence of regional structural disconnectivity due to (i) all representative T2 fluid-attenuated inversion recovery lesions, (ii) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across disability groups ('no to mild disability' to 'moderate to severe disability'), (iii) all representative T2 fluid-attenuated inversion recovery lesions and (iv) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across cognitive status ('cognitively preserved' to 'cognitively impaired'). In the full cohort, structural disconnection in the ventral attention and subcortical networks, particularly in the supramarginal and putamen regions, was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to paramagnetic rim lesions in the motor-related regions. Subcortical structural disconnection, particularly in the ventral diencephalon and thalamus regions, was an early biomarker of cognitive impairment. Our data-driven model revealed that the structural disconnection in the subcortical regions, particularly in the thalamus, is an early biomarker for both disability and cognitive impairment in multiple sclerosis. Paramagnetic rim lesions-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in multiple sclerosis. Such information might be used to identify people with multiple sclerosis who have an increased risk of disability progression or cognitive decline in order to provide personalized treatment plans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA