Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683128

RESUMO

Adaptive structures based on fiber-rubber composites with integrated Shape Memory Alloys are promising candidates for active deformation tasks in the fields of soft robotics and human-machine interactions. Solid-body hinges improve the deformation behavior of such composite structures. Textile technology enables the user to develop reinforcement fabrics with tailored properties suited for hinged actuation mechanisms. In this work, flat knitting technology is used to create biaxially reinforced, multilayer knitted fabrics with hinge areas and integrated Shape Memory Alloy wires. The hinge areas are achieved by dividing the structures into sections and varying the configuration and number of reinforcement fibers from section to section. The fabrics are then infused with silicone, producing a fiber-rubber composite specimen. An existing simulation model is enhanced to account for the hinges present within the specimen. The active deformation behavior of the resulting structures is then tested experimentally, showing large deformations of the hinged specimens. Finally, the simulation results are compared to the experimental results, showing deformations deviating from the experiments due to the developmental stage of the specimens. Future work will benefit from the findings by improving the deformation behavior of the specimens and enabling further development for first applications.

2.
Materials (Basel) ; 12(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717408

RESUMO

Weft-knitted fabrics offer an excellent formability into complex shapes for composite application. In biaxial weft-knitted fabric, additional yarns are inserted in the warp (wale-wise) and weft (course-wise) directions as a reinforcement. Due to these straight yarns, the mechanical properties of such fabrics are better than those of unreinforced weft-knitted fabrics. The forming process of flat fabrics into 3D preforms is challenging and requires numerical simulation. In this paper, the mechanical behavior of biaxial weft-knitted fabrics is simulated by means of macro- and meso-scale finite element method (FEM) models. The macro-scale modelling approach is based on a shell element formulation and offers reasonable computational costs but has some limitations by the description of fabric mechanical characteristics and forming behavior. The meso-scale modelling approach based on beam elements can describe the fabric's mechanical and forming characteristics better at a higher computational cost. The FEM models were validated by comparing the results of various simulations with the equivalent experiments. With the help of the parametric models, the forming of biaxial weft-knitted fabrics into complex shapes can be simulated. These models help to predict material and process parameters for optimized forming conditions without the necessity of costly experimental trials.

3.
Mater Sci Eng C Mater Biol Appl ; 91: 754-761, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033310

RESUMO

Core-sheath structured fibres were developed for application as part of an alternative malaria vector control intervention aimed at reducing outdoor malaria transmission. The fibres were prepared by melt spinning of high density polyethylene (HDPE) as sheath and with a concentrate containing volatile N,N-Diethyl-m-toluamide (DEET) in poly(ethylene-co-vinyl acetate) (EVA) as core. The concentrate was prepared by a simple absorption processes to a content up to 40 wt% DEET. Scanning electron microscope imaging confirmed the formation of a bicomponent core-sheath fibre structure. Confocal Raman spectroscopy revealed the development of a concentration gradient of DEET in the sheath layer, suggesting a diffusion controlled release process. Excellent processability was demonstrated on an extrusion system melt spinning with take up speeds reaching 3000 m min-1. Sample textiles knitted from such filaments showed high residual repellence activity even after 20 cold washes or after eight months ageing under laboratory conditions. These findings indicate that this technology offers an alternative way to prevent outdoor mosquito bites in an effective and affordable manner.


Assuntos
Culicidae/efeitos dos fármacos , DEET/toxicidade , Repelentes de Insetos/toxicidade , Polietileno/química , Animais , Preparações de Ação Retardada , Feminino , Imageamento Tridimensional , Análise Espectral Raman , Estresse Mecânico , Têxteis , Termogravimetria , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...