Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(11): 6651-6660, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32396730

RESUMO

The Pb(II)-binding mechanism on an annealed hematite (1102) surface was studied using crystal truncation rod (CTR) X-ray diffraction coupled with density functional theory (DFT) calculations. The best fit CTR model suggested that Pb(II) sorbed selectively to one type of edge-sharing surface site (ES2) over two other potential surface sites. From the best fit model structure, it was found that the Pb surface complex species forms a trigonal pyramid geometry. The base consists of three oxygen groups, two of which are associated with the substrate surface (IO and IIIO) and one that is a distal O extending toward solution. The trigonal pyramid geometry is slightly distorted with Pb-O bond lengths ranging from 2.21 to 2.31 Å and O-Pb-O bond angles ranging from 72° to 75°. Under this structural distortion, the nearest distance between Pb and Fe is found to be 3.39(1) Å. Consistent with the CTR results, DFT calculations indicate the Pb binding energy at the ES2 site is at least 0.16 eV more favorable than that at the other two potential binding sites considered. Using bond-valence rules we propose a stoichiometry of Pb(II) binding on the hematite (1102) surface which indicates proton release through the deprotonation of all oxygen groups bonding to Pb.


Assuntos
Teoria da Densidade Funcional , Chumbo , Adsorção , Compostos Férricos , Difração de Raios X
2.
Environ Sci Technol ; 52(19): 11161-11168, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188697

RESUMO

The binding mechanism of Sb(V) on a single-crystal hematite (11̅02) surface was studied using crystal truncation rod X-ray diffraction (CTR) under in situ conditions. The best-fit CTR model indicates Sb(V) adsorbs at the surface as an inner-sphere complex forming a tridentate binding geometry with the nearest Sb-Fe distance of 3.09(4) Å and an average Sb-O bond length of 2.08(5) Å. In this binding geometry, Sb is bound at both edge-sharing and corner-sharing sites of the surface Fe-O octahedral units. The chemical plausibility of the proposed structure was further verified by bond valence analysis, which also deduced a protonation scheme for surface O groups. The stoichiometry of the surface reaction predicts the release of one OH- group at pH 5.5.


Assuntos
Compostos Férricos , Adsorção , Difração de Raios X , Raios X
3.
J Colloid Interface Sci ; 524: 65-75, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29631220

RESUMO

A structural study of the surface complexation of Pb(II) on the (11¯02) surface of hematite was undertaken using crystal truncation rod (CTR) X-ray diffraction measurements under in situ conditions. The sorbed Pb was found to form inner sphere (IS) complexes at two types of edge-sharing sites on the half layer termination of the hematite (11¯02) surface. The best fit model contains Pb in distorted trigonal pyramids with an average PbO bond length of 2.27(4) Å and two characteristic Pb-Fe distances of 3.19(1) Å and 3.59(1) Å. In addition, a site coverage model was developed to simulate coverage as a function of sorbate-sorbate distance. The simulation results suggest a plausible Pb-Pb distance of 5.42 Å, which is slightly larger than the diameter of Pb's first hydration shell. This relates the best fit surface coverage of 0.59(4) Pb per unit cell at monolayer saturation to steric constraints as well as electrostatic repulsion imposed by the hydrated Pb complex. Based on the structural results we propose a stoichiometry of the surface complexation reaction of Pb(II) on the hematite (11¯02) surface and use bond valence analysis to assign the protonation schemes of surface oxygens. Surface reaction stoichiometry suggests that the proton release in the course of surface complexation occurs from the Pb-bound surface O atoms at pH 5.5.

4.
Environ Sci Technol ; 46(2): 843-51, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22136137

RESUMO

We have studied the immobilization of Sb(III) and Sb(V) by Al-rich phases - hydrous Al oxide (HAO), kaolinite (KGa-1b), and oxidized and reduced nontronite (NAu-1) - using batch experiments to determine the uptake capacity and the kinetics of adsorption and Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy to characterize the molecular environment of adsorbed Sb. Both Sb(III) and Sb(V) are adsorbed in an inner-sphere mode on the surfaces of the studied substrates. The observed adsorption geometry is mostly bidentate corner-sharing, with some monodentate complexes. The kinetics of adsorption is relatively slow (on the order of days), and equilibrium adsorption isotherms are best fit using the Freundlich model. The oxidation state of the structural Fe within nontronite affects the adsorption capacity: if the clay is reduced, the adsorption capacity of Sb(III) is slightly decreased, while Sb(V) uptake is increased significantly. This may be a result of the presence of dissolved Fe(II) in the reduced nontronite suspensions or associated with the structural rearrangements in nontronite due to reduction. These research findings indicate that Sb can be effectively immobilized by Al-rich phases. The increase in Sb(V) uptake in response to reducing structural Fe in clay can be important in natural settings since Fe-rich clays commonly go through oxidation-reduction cycles in response to changing redox conditions.


Assuntos
Silicatos de Alumínio/química , Alumínio/química , Antimônio/química , Caulim/química , Adsorção , Ferro/química , Oxirredução , Propriedades de Superfície
5.
Chemosphere ; 84(8): 1058-65, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21601233

RESUMO

Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.


Assuntos
Minerais/química , Poluentes do Solo/química , Triazinas/química , Trinitrotolueno/química , Poluentes Químicos da Água/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Recuperação e Remediação Ambiental , Poluentes do Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Triazinas/análise , Trinitrotolueno/análise , Poluentes Químicos da Água/análise
6.
J Colloid Interface Sci ; 354(2): 843-57, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21087772

RESUMO

The zetapotential of calcite in contact with aqueous solutions of varying composition is determined for pre-equilibrated suspensions by means of electrophoretic measurements and for non-equilibrium solutions by means of streaming potential measurements. Carbonate and calcium are identified as charge determining ions. Studies of the equilibrium solutions show a shift of isoelectric point with changing CO(2) partial pressure. Changes in pH have only a weak effect in non-equilibrium solutions. The surface structure of (104)-faces of single crystal calcite in contact to solutions corresponding to those of the zetapotential investigations is determined from surface diffraction measurements. The results reveal no direct indication of calcium or carbonate inner-sphere surface species. The surface ions are found to relax only slightly from their bulk positions; the most significant relaxation is a ∼4° tilt of the surface carbonate ions towards the surface. Two ordered layers of water molecules are identified, the first at 2.35±0.05Å above surface calcium ions and the second layer at 3.24±0.06Å above the surface associated with surface carbonate ions. A Basic-Stern surface complexation model is developed to model observed zetapotentials, while only considering outer-sphere complexes of ions other than protons and hydroxide. The Basic-Stern SCM successfully reproduces the zetapotential data and gives reasonable values for the inner Helmholtz capacitance, which are in line with the Stern layer thickness estimated from surface diffraction results.

7.
Environ Toxicol Chem ; 30(2): 345-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21038362

RESUMO

Potentially toxic nitroaromatic and nitramine compounds are introduced onto soils during detonation of explosives. The present study was conducted to investigate the desorption and transformation of explosive compounds loaded onto three soils through controlled detonation. The soils were proximally detonated with Composition B, a commonly used military explosive containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Gas-exchangeable surface areas were measured from pristine and detonated soils. Aqueous batches of detonated soils were prepared by mixing each soil with ultrapure water. Samples were collected for 141 d and concentrations of Composition B compounds and TNT transformation products 2-amino-4,6-dinitrotoluene (2ADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and 1,3,5-trinitrobenzene (1,3,5-TNB) were measured. The RDX, HMX, and TNT concentrations in detonated soil batches exhibited first-order physical desorption for the first, roughly, 10 d and then reached steady state apparent equilibrium within 40 d. An aqueous batch containing powdered Composition B in water was sampled over time to quantify TNT, RDX, and HMX dissolution from undetonated Composition B particles. The TNT, RDX, and HMX concentrations in aqueous batches of pure Composition B reached equilibrium within 6, 11, and 20 d, respectively. Detonated soils exhibited lower gas-exchangeable surface areas than their pristine counterparts. This is likely due to an explosive residue coating on detonated soil surfaces, shock-induced compaction, sintering, and/or partial fusion of soil particles under the intense heat associated with detonation. Our results suggest that explosive compounds loaded to soils through detonation take longer to reach equilibrium concentrations in aqueous batches than soils loaded with explosive residues through aqueous addition. This is likely due to the heterogeneous interactions between explosive residues and soil particle surfaces.


Assuntos
Azocinas/isolamento & purificação , Substâncias Explosivas/isolamento & purificação , Solo/análise , Triazinas/isolamento & purificação , Trinitrotolueno/isolamento & purificação , Adsorção
8.
Langmuir ; 25(10): 5574-85, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19371051

RESUMO

Sorption of Zn(II)(aq) on hematite (alpha-Fe2O3) nanoparticles (average diameter 10.5 nm) and microparticles (average diameter 550 nm) has been examined over a range of total Zn(II)(aq) concentrations (0.4-7.6 mM) using Zn K-edge EXAFS spectroscopy and selective chemical extractions. When ZnCl2 aqueous solutions were reacted with hematite nanoparticles (HN) at pH 5.5, Zn(II) formed a mixture of four- and six-coordinated surface complexes [Zn(O,OH)4 and Zn(O,OH)6] with an average Zn-O distance of 2.04+/-0.02 A at low sorption densities (Gammaor=3.38 micromol/m2), we observed the formation of Zn(O,OH)6 surface complexes, with an average Zn-O distance of 2.09+/-0.02 A, a Zn-Zn distance of 3.16+/-0.02 A, and a linear multiple-scattering feature at 6.12+/-0.06 A. Formation of a Zn(OH)2(am) precipitate for the higher sorption density samples (Gamma>or=3.38 micromol/m2) is suggested on the basis of comparison of the EXAFS spectra of the sorption samples with that of synthetic Zn(OH)2am. In contrast, EXAFS spectra of Zn(II) sorbed on hematite microparticles (HM) under similar experimental conditions showed no evidence of surface precipitates even at the same total [Zn(II)(aq)] that resulted in precipitate formation in the nanoparticle system. Instead, Zn(O,OH)6 octahedra (d(Zn-O)=2.10+/-0.02 A) were found to sorb dominantly in an inner-sphere, bidentate, edge-sharing fashion on Fe3+(O,OH)6 octahedra at hematite microparticle surfaces, based on an EXAFS-derived Zn-Fe3+ distance of 3.44+/-0.02 A. CaCl2 selective extraction experiments showed that 10-15% of the sorbed Zn(II) was released from Zn/HN sorption samples, and about 40% was released from a Zn/HM sorption sample. These fractions of Zn(II) are interpreted as weakly bound, outer-sphere adsorption complexes. The combined EXAFS and selective chemical extraction results indicate that (1) both Zn(O,OH)4 and Zn(O,OH)6 adsorption complexes are present in the Zn/HN system, whereas dominantly Zn(O,OH)6 adsorption complexes are present in the Zn/HM system; (2) a higher proportion of outer-sphere Zn(II) surface complexes is present in the Zn/HM system; and (3) Zn-containing precipitates similar to Zn(OH)2(am) form in the nanoparticle system but not in the microparticle system, suggesting a difference in reactivity of the hematite nanoparticles vs microparticles with respect to Zn(II)(aq).

9.
Langmuir ; 25(10): 5586-93, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19326938

RESUMO

Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)<4 mM, whereas it is 50-100% higher for the Zn(II)/Ox/HN system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]tot<4 mM. In the Zn(II)/Ox/HM ternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

10.
Environ Sci Technol ; 41(11): 3918-25, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17612169

RESUMO

The three-dimensional structure of the hydrated (1014) surface of MnCO3 at 90% relative humidity and 295 K is determined from measurements of X-ray scattering along ten crystal-truncation rods (CTRs). The scattering data provide both vertical and lateral information about the interfacial structure. The model that best fits the scattering data is a surface having a first layer of manganese carbonate and an overlayer of oxygen (as water). Within the measurement uncertainty, the overlayer of oxygen (O(w)) and the first-layer of manganese (Mn1) have equal occupancies of 0.84. The Mn1-O(w) distance between these layers is 2.59 +/- 0.04 angstroms. The overlayer O atoms are displaced laterally by 0.157 angstroms in the x- and 0.626 angstroms in the y-direction relative to the first-layer Mn atoms. The first-layer carbonate groups tilt by -4.2 +/- 2.1 degrees in phi (toward the surface plane) and -2.6 +/- 1.2 degrees in chi (an axis perpendicular to phi). The second-layer carbonate groups do not tilt, at least within measurement uncertainty. The spacing between Mn atom layers remains unchanged within measurement error whereas the spacing between layers of C atoms in carbonate contracts for the top three layers. Knowledge of the detailed atomic structure of the hydrated (1014) surface of MnCO3 provides a structural baseline for the interpretation of chemical reactivity.


Assuntos
Carbonatos/química , Manganês/química , Umidade , Estrutura Molecular , Oxigênio/química , Propriedades de Superfície , Água/química
11.
Langmuir ; 21(17): 7899-906, 2005 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16089398

RESUMO

Long-period X-ray standing wave fluorescence (XSW) and X-ray reflectivity techniques are employed to probe the conformation of a Br-poly(ethylene glycol) (PEG)-peptide adsorbate at the hydrated interface of a polystyrene substrate. The Br atom on this Br-PEG-peptide construct serves as a marker atom allowing determination by XSW of its position and distribution with respect to the adsorption surface with angstrom resolution. Adsorption occurs on native or ion-beam-modified polystyrene films that are spin-coated onto a Si substrate and display either nonpolar or polar surfaces, respectively. A compact, oriented monolayer of Br-PEG-peptide can be formed with the peptide end adsorbed onto the polar surface and the PEG end terminating with the Br tag extending into the aqueous phase. The 108-141 A distance of the Br atom from the polystyrene surface in this oriented monolayer is similar to the estimated approximately 150 A length of the extended Br-PEG-peptide. This Br-polystyrene distance depends on adsorption time and surface properties prior to adsorption. Incomplete multilayers form on the polar surface after sufficient adsorption time elapses. By contrast, adsorption onto the nonpolar surface is submonolayer, patchy, and highly disordered with an isotropic Br distribution. Overall, this combination of X-ray surface scattering techniques with a novel sample preparation strategy has several advantages as a real space probe of adsorbed or covalently bound biomolecules at the liquid-solid interface.


Assuntos
Peptídeos/química , Polietilenoglicóis/química , Adsorção , Bromo/química , Microscopia de Fluorescência/métodos , Conformação Proteica , Sensibilidade e Especificidade , Espectrometria por Raios X , Propriedades de Superfície , Difração de Raios X , Raios X
12.
Langmuir ; 21(10): 4503-11, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16032866

RESUMO

The distributions of Pb(II) and As(V)O4(3-) ions in the interfacial region between thin poly(acrylic acid) (PAA) coatings and aalpha-A12O3(0001), alpha-Al2O3(1-102), and alpha-Fe2O3(0001) single-crystal substrates were studied using long-period X-ray standing wave fluorescent yield (XSW-FY) and X-ray reflectivity techniques. The PAA film serves as a simplified analogue of natural organic matter (NOM) coatings on mineral surfaces. Such coatings are often assumed to play an important role in the partitioning and speciation of trace heavy metals in soils and aquatic systems. On the alpha-Al2O3(1-102) surface, Pb(II) ions were found to preferentially bind to the PAA coating, even at sub-micromolar Pb(II) concentrations, and to partition increasingly onto the metal oxide surface as the Pb(II) concentration was increased ([Pb(II)] = 5 x 10(-8) to 2 x 10(-5) M, pH = 4.5; 0.01 M NaCl background electrolyte). This observation suggests that the binding sites in the PAA coating outcompete those on the alpha-Al2O3(1-102) surface for Pb(II) under these conditions. The As(V)O4(3-) oxoanion partitions preferentially to the L-Al2O3(1-102) surface for the As(V)O4(3-) concentrations examined (1 x 10(-7) to 5 x 10(-7) M, pH = 4.5; 0.01 M NaCl background electrolyte). Partitioning of Pb(II) (at 1 x 10(-7) M and pH 4.5) was also examined at PAA/alpha-Al2O3(0001), and PAA/alpha-Fe2O3(0001) interfaces using XSW-FY measurements. Our results show that the PAA coating was the dominant sink for Pb(II) in all three samples; however, the relative order of reactivity of these metal oxide surfaces with respect to Pb(II) sorption is alpha-Fe2O3(0001) > alpha-Al2O3(1-102) > alpha-Al2O3(0001). This order is consistent with that found in previous studies of the PAA-free surfaces. These XSW results strongly suggest that the characteristics of the organic film (i.e., binding affinity, type, and density of binding sites) as well as metal oxide substrate reactivity are key factors determining the distribution and speciation of Pb(II) and As(V)O4(3-) at organic film/metal oxide interfaces.

13.
Nat Mater ; 3(2): 111-4, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14743214

RESUMO

Attributed to their specific atomic bonding, the soft, graphite-like, hexagonal boron nitride (h-BN) and its superhard, diamond-like, cubic polymorph (c-BN) are important technological materials with a wide range of applications. At high pressure and temperature, h-BN can directly transform to a hexagonal close-packed polymorph (w-BN) that can be partially quenched after releasing pressure. Previous theoretical calculations and experimental measurements (primarily on quenched samples) provided substantial information on the transition, but left unsettled questions due to the lack of in situ characterization at high pressures. Using inelastic X-ray scattering to probe the boron and nitrogen near K-edge spectroscopy, here we report the first observation of the conversion process of boron and nitrogen sp(2)- and p-bonding to sp(3) and the directional nature of the sp(3) bonding. In combination with in situ X-ray diffraction probe, we have further clarified the structure transformation mechanism. The present archetypal example opens two enormous, element-specific, research areas on high-pressure bonding evolutions of boron and nitrogen; each of the two elements and their respective compounds have displayed a wealth of intriguing pressure-induced phenomena that result from bonding changes, including metallization, superconductivity, semiconductivity, polymerization and superhardness.


Assuntos
Compostos de Boro/química , Técnicas de Química Analítica/métodos , Manufaturas , Análise Espectral
14.
Science ; 302(5644): 425-7, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14564003

RESUMO

Compressed under ambient temperature, graphite undergoes a transition at approximately 17 gigapascals. The near K-edge spectroscopy of carbon using synchrotron x-ray inelastic scattering reveals that half of the pi-bonds between graphite layers convert to sigma-bonds, whereas the other half remain as pi-bonds in the high-pressure form. The x-ray diffraction pattern of the high-pressure form is consistent with a distorted graphite structure in which bridging carbon atoms between graphite layers pair and form sigma-bonds, whereas the nonbridging carbon atoms remain unpaired with pi-bonds. The high-pressure form is superhard, capable of indenting cubic-diamond single crystals.

15.
Environ Sci Technol ; 37(2): 300-7, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12564901

RESUMO

X-ray spectroscopy measurements have been combined with macroscopic uptake data and transmission electron microscopy (TEM) results to show that Pb(II) uptake by Burkholderia cepacia is due to simultaneous sorption and biomineralization processes. X-ray microprobe mapping of B. cepacia biofilms formed on alpha-Al2O3 surfaces shows that Pb(II) is distributed heterogeneously throughout the biofilms because of the formation of Pb "hot spots". EXAFS data and TEM observations show that the enhanced Pb accumulation is due to the formation of nanoscale crystals of pyromorphite (Pb5(PO4)3(OH)) adjacent to the outer-membrane of a fraction of the total population of B. cepacia cells. In contrast, B. cepacia cell suspensions or biofilms that were heat-killed or pretreated with X-rays do not form pyromorphite, which suggests that metabolic activity is required. Precipitation of pyromorphite occurs over several orders of magnitude in [H-] and [Pb] and accounts for approximately 90% of the total Pb uptake below pH 4.5 but only 45-60% at near-neutral pH because of the formation of additional Pb(II) adsorption complexes. Structural fits of Pb L(III) EXAFS data collected for heat-treated cells at near-neutral pH suggest that Pb(II) forms inner-sphere adsorption complexes with carboxyl functional groups in the biofilms.


Assuntos
Burkholderia cepacia/química , Chumbo/farmacocinética , Adsorção , Biofilmes , Burkholderia cepacia/fisiologia , Precipitação Química , Microscopia Eletrônica , Minerais/química , Fosfatos/química , Análise Espectral
16.
J Colloid Interface Sci ; 225(2): 466-482, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11254287

RESUMO

Macroscopic measurements show that Pb(II) uptake on iron-(hydr)oxides can be altered significantly by dissolved carbonate (enhanced up to 18% at pH 5 and decreased above pH approximately 6.5 in analyses at 1 atm CO(2)). This study elucidates the molecular-scale processes giving rise to these macroscopic effects by characterizing the structures of Pb(II) sorption complexes formed on goethite (alpha-FeOOH) in the presence of carbonate using in situ Pb L(III)-EXAFS and ATR-FTIR spectroscopies. Bond valence and structural constraints are applied to develop mineral surface site-specific models for Pb sorption. Under all conditions studied (pH 5-7, Gamma(Pb)=0.4-4µmol/m(2), and P(CO(2))=0-1 atm), Pb(II) forms predominantly inner-sphere edge-sharing (bidentate and/or tridentate) complexes with Fe(O,OH)(6) octahedra (R(Pb-Fe) approximately 3.3 Å). Corner-sharing complexes (R(Pb-Fe) approximately 3.9 Å) are observed only in low pH (5) samples (P(CO(2)) 0-1 atm). Consistent with this pH sensitivity, site-specific analyses suggest that the relative abundance of corner-sharing sites reflects changes in the proton affinity of triply coordinated sites on the goethite (110) surface as suggested previously. FTIR results suggest the existence of ternary surface complexes in which carbonate groups bond to Pb as monodentate ligands. EXAFS data indicate that these ternary complexes are bound to the surface through Pb, forming metal-bridged (Type A) complexes. Findings are summarized as structural models and corresponding mineral surface site-specific chemical reactions. Copyright 2000 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...