Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569970

RESUMO

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Assuntos
Antimônio , Arsênio , Carvão Vegetal , Recuperação e Remediação Ambiental , Grafite , Mineração , Poluentes do Solo , Antimônio/química , Antimônio/análise , Grafite/química , Carvão Vegetal/química , Poluentes do Solo/análise , Arsênio/análise , Recuperação e Remediação Ambiental/métodos , Solo/química
2.
J Hazard Mater ; 469: 133903, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430601

RESUMO

Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.


Assuntos
Oryza , Poluentes do Solo , Oryza/metabolismo , Cocos , Chumbo/análise , Solo/química , Poluentes do Solo/metabolismo , Carvão Vegetal/química , Cádmio/metabolismo
3.
J Hazard Mater ; 469: 133866, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422732

RESUMO

The escalating problem of compound arsenic (As) and cadmium (Cd) contamination in agricultural soils necessitates the urgency for effective remediation strategies. This is compounded by the opposing geochemical behaviors of As and Cd in soil, and the efficacy of biochar treatment remains unclear. This pioneering study integrated 3780 observation pairs referred from 92 peer-reviewed articles to investigate the impact of iron-modified biochar on As and Cd responses across diverse soil environments. Regarding the treatments, 1) biochar significantly decreased the exchangeable and acid-soluble fraction of As (AsF1, 20.9%) and Cd (CdF1, 24.0%) in paddy fields; 2) iron-modified biochar significantly decreased AsF1 (32.0%) and CdF1 (27.4%); 3) iron-modified biochar in paddy fields contributed to the morphological changes in As and Cd, mainly characterized by a decrease in AsF1 (36.5%) and CdF1 (36.3%) and an increase in the reducible fraction of As (19.7%) and Cd (39.2%); and 4) iron-modified biochar in paddy fields increased As (43.1%) and Cd (53.7%) concentrations in the iron plaque on root surfaces. We conclude that iron-modified biochar treatment of paddy fields is promising in remediating As and Cd contamination by promoting the formation of iron plaque.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Ferro/química , Cádmio/química , Arsênio/química , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química
4.
Environ Pollut ; 343: 123203, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135139

RESUMO

Spruce wood and Typha (wetland plant) derived biochars pyrolyzed at 350 °C and 600 °C were tested for their sorption affinity for organic pollutants (diclofenac, methylparaben, benzotriazole and sodium 1-decanesulfonate) and nutrients (nitrate, ammonium, phosphate and boron) commonly found in greywater. Batch and column studies combined with molecular dynamics modelling determined the sorption capacity, kinetics, and described the underlying mechanisms. The spruce biochar (600 °C) exhibited the highest sorption capacity mainly for the tested organics. The dynamic test performed for spruce biochar (600 °C) showed that the magnitude of desorption was low, and the desorbed amount ranged between 3 and 11 %. Molecular dynamics modelling (a computational tool for elucidating molecular-level interactions) indicated that the increased sorption of nitrate and boron on spruce biochar (600 °C) could be attributed to hydrophobic interactions. The molecular dynamics shows that predominant adsorption of organic pollutants was governed by π-π stacking, with a minor role of hydrogen-bonding on the biochar surface. In summary, higher pyrolysis temperature biochar yielded greater adsorption capacity greywater borne contaminants and the reaction temperature (10-34 °C) and presence of anionic surfactant had a limited effect on the adsorption of organic pollutants, suggesting efficacious application of biochar in general for greywater treatment in nature-based systems.


Assuntos
Poluentes Ambientais , Nitratos , Adsorção , Simulação de Dinâmica Molecular , Boro , Carvão Vegetal/química , Compostos Orgânicos , Nutrientes
5.
Sci Total Environ ; 913: 169436, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160846

RESUMO

Due to the 'forever' degrading nature of plastic waste, plastic waste management is often complicated. The applications of plastic are ubiquitous and inevitable in many scenarios. Current global waste plastics production is ca. 3.5 MMT per year, and with the current trend, plastic waste production will reach 25,000 MMT by 2040. However, the rapid growth in plastic manufacture and the material's inherent nature resulted in the accumulation of a vast amount of plastic garbage. The current recycling rate is <10 %, while the large volumes of discarded plastic waste cause environmental and ecological problems. Recycling rates for plastic vary widely by region and type of plastic. In some developed countries, the recycling rate for plastics is around 20-30 %, while in many developing nations, it is much lower. These statistics highlight the magnitude of the plastic waste problem and the urgent need for comprehensive strategies to manage plastic waste more effectively and reduce its impact on the environment. This review critically analyses past studies on the essential and efficient techniques for turning plastic trash into treasure. Additionally, an attempt has been made to provide a comprehensive understanding of the plastic upcycling process, the 3Rs policy, and the life-cycle assessment (LCA) of plastic conversion. The review advocates pyrolysis as one of the most promising methods of turning plastic trash into valuable chemicals. In addition, plastic waste management can be severely impacted due to uncontrollable events, such as Covid 19 pandemic. Recycling and chemical upcycling can certainly bring value to the end-of-life plastic. However, the LCA analysis indicated there is still a huge scope for innovation in chemical upcycling area compared to mechanical recycling. The formulation of policies and heightened public participation could play a pivotal role in reducing the environmental repercussions of plastic waste and facilitating a shift towards a more sustainable future.

6.
Environ Sci Pollut Res Int ; 30(29): 74314-74326, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37202639

RESUMO

The accuracy of environmental risk assessment depends upon selecting appropriate matrices to extract the most risk-relevant portion of contaminant(s) from the soil. Here, we applied the chelatants EDTA and tartaric acid to extract a metal-contaminated soil. Pistia stratiotes was applied as an indicator plant to measure accumulation from the metal-laden bulk solutions generated, in a hydroponic experiment lasting 15 days. Speciation modeling was used to elucidate key geo-chemical mechanisms impacting matrix and metal-specific uptake revealed by experimental work. The highest concentrations of soil-borne metals were extracted from soil by EDTA (7.4% for Cd), but their uptake and translocation to the plant were restricted due to the formation of stable metal complexes predominantly with DOC. Tartaric acid solubilized metals to a lesser extent (4.6% for Cd), but a higher proportion was plant available due to its presence mainly in the form of bivalent metal cations. The water extraction showed the lowest metal extraction (e.g., 3.9% for Cd), but the metal species behaved similarly to those extracted by tartaric acid. This study demonstrates that not all extractions are equal and that metal-specific speciation will impact accurate risk assessment in soil (water)-plant systems. In the case of EDTA, a deleterious impact on DOC leaching is an obvious drawback. As such, further work should now determine soil and not only metal-specific impacts of chelatants on the extraction of environmentally relevant portions of metal(loid)s.


Assuntos
Araceae , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Cádmio , Ácido Edético/química , Solo/química , Biodegradação Ambiental , Poluentes do Solo/análise
8.
Environ Sci Pollut Res Int ; 30(5): 12571-12583, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36112289

RESUMO

A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Cádmio , Poluentes Químicos da Água/análise , Água/química , Carvão Vegetal/química , Adsorção
9.
Environ Sci Pollut Res Int ; 29(55): 83545-83553, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35764732

RESUMO

The application of organic amendments to contaminated soils is a remediation method to regulate metal(loid) leaching to waters and uptake to crops. Here, wood-derived biochar and/or green waste compost was amended to a Zn-rich agricultural soil (~ 450 mg kg-1 total Zn, derived from legacy sludge application). A pot experiment grew barley and pea crops in amended soil for 100 days, simultaneously measuring Zn, pH, and dissolved organic carbon (DOC) in pore waters and Zn uptake to plants. An assessment was made of leaching of Zn via a linked column test that recirculated soil leachates to amendments multiple times to chart the confounding impacts of pH and DOC on Zn mobility. Concentrations of Zn in pore waters in the pot test were reduced from 2 mg l-1 in soil without amendment to 1 mg l-1 following the addition of 5% (vol.) biochar and compost, which was reduced further (0.5 mg l-1) in the presence of crops. DOC appeared largely unaffected by soil amendment when mixed into soil, though was universally increased by the presence of the barley crop, whilst pH was variable (pH 4-6) and not clearly correlated with any intervention. Barley head mass was significantly increased after 5% biochar and both doses of compost amendment. Barley Zn content was maintained or enhanced by all soil amendments. The leaching column test revealed that biochar raised pH above that of the soil and compost amendment. Zn leachate concentrations were also reduced from after biochar amendment. Notably, compost resulted in net mobilisation of Zn from soil. This study demonstrates that the addition of biochar and compost to a Zn-rich agricultural soil was able to reduce pore water Zn considerably, especially in the presence of a barley crop. Compared to compost, biochar was the more efficient sorbent of Zn.


Assuntos
Compostagem , Poluentes do Solo , Solo/química , Esgotos/química , Carvão Vegetal/química , Poluentes do Solo/análise , Zinco
10.
J Environ Manage ; 318: 115530, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35752005

RESUMO

The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by ∼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (∼1 mg L-1), as a result of V1 & V2 compared to untreated soil (∼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.


Assuntos
Arsênio , Lolium , Poluentes do Solo , Animais , Arsênio/análise , Carvão Vegetal , Cobre/análise , Metais , Mineração , Solo , Poluentes do Solo/análise
11.
Chemosphere ; 300: 134592, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430201

RESUMO

In remediation of metal(loid) polluted soils, it is crucial to improve soil conditions and reduce metal(loid) toxicity to permit plant growth. To do that, amendments, such as biochar, activated carbon, and redmud, can be applied to the soil. Their effects are dependent on their type and properties. The aims of this study were thus to evaluate the potential of diverse biochars, activated carbons, and redmuds to reduce phytotoxicity of a former mine technosol polluted with As and Pb. Two pots experiments were set up. The first one applied on Pontgibaud technosol ten biochars, eight activated carbons, and three redmuds, at 2% for the biochars and activated carbons and 1% for the redmud. Soil pore water properties (pH, electrical conductivity), metal(loid) mobility, and Phaseolus vulgaris growth were monitored. In a second experiment, the five best amendments, one redmud associated with two biochars and two activated carbons, selected based on their ability to improve soil conditions, immobilize metal(loid)s and improve plant growth, were applied. The same plant species was used and soil and plant parameters were measured. Results demonstrated that not all amendments were capable of ameliorating soil conditions and reducing soil phytotoxicity. Moreover, the five selected amendments (biochars from oak bark sapwood and bamboo, activated carbons from vegetal feedstock chemically activated and physically activated, modified redmud) showed good sorption capacity towards Pb, with maximum sorption capacity between 63 and 217 mg g-1, depending on the amendment, and their combined application led to better soil properties improvement than the single amendments. However, plant growth was only ameliorated further than a single application in the redmud-biochar combination but not in the association of redmud with activated carbon. This study is one of the first to deliver a rapid phytotoxicity test screening demonstrating that redmud associated with particular biochar could be beneficial in reducing the phytotoxicity of technosol polluted with As and Pb and thus allow plant growth and a phytomanagement process.


Assuntos
Carvão Vegetal , Poluentes do Solo , Carvão Vegetal/química , Chumbo/toxicidade , Desenvolvimento Vegetal , Solo/química , Poluentes do Solo/análise
12.
Chemosphere ; 293: 133586, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35031246

RESUMO

The soil hydraulic properties of two low-organic soils (Fluvisol; Regosol) were investigated following their amendment with biochar alone or in combination with manure, compost and co-composted biochar. Self-irrigating boxes containing the soil and amendment combinations were purposed with a battery of soil moisture sensors as well as soil porewater sampling devices. Static sampling determined bulk density, porosity and derived soil water retention curves. The aim of this study was to identify the most advantageous amendment combinations to enhance soil water retention whilst simultaneously avoiding excessive nutrient leaching arising, primarily, from manure application. Biochar significantly decreased bulk density and increased total porosity when compared to compost in the Fluvisol, whereas manure affected the greatest changes in the Regosol. All of the tested amendments adjusted the shape or extent of the soil water retention curves, but biochar addition resulted in the greatest increase (⁓50%) in easily available water content (for plants) in both soils, when compared to the control. Saturated hydraulic conductivity was, however, not changed by any of the amendments which reflects a lack of influence on infiltration. An enhancement in nutrient retention occurred in some of the soil amendment configurations, such as for co-composted biochar at 2% dosage and 5% manure-biochar mixture, as revealed by porewater analysis. In summary, the application of biochar with and without additional compost and manure can enhance soil water retention in low-organic soils whilst maintaining or enhancing nutrient retention. Such finding supports the application of mixed organic amendments to low-organic (and therefore drought-prone) arable soils.


Assuntos
Compostagem , Esterco , Carvão Vegetal , Nutrientes , Solo , Água
13.
Sci Total Environ ; 814: 152772, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986421

RESUMO

Increased soil drought events threaten the yields of sugar beet (Beta vulgaris L.) and other staples of arable production in central Europe. In this study we evaluated soil moisture and nutrients as impacted by a two and five % (wt) addition of biochar, manure and their blend to a loamy-sand Regosol. Cyclical soil drought was achieved by the controlled reduction of watering by 75% in pot experiments. Ongoing soil moisture and nutrient measurements were taken, and physiological parameters of sugar beet plants were analysed three weeks after the induced drought. At the end of the experiment (16 weeks) plants were harvested and their mass assessed, as well as their nutrient, pigment and sugar contents. In contrast to the addition of manure, soil volumetric water contents were two to three times greater after biochar amendment, compared to the control soil. Porewater analysis revealed that nutrient leaching (e.g., NO3-, K+) from manure addition to soil was reduced when biochar was blended in (by ≤86% compared to manure alone). Crop analysis showed that leaf gas exchanges were moderated during drought following soil amendment, and leaf and tuber yields were increased furthest when combined biochar-manure blends were applied (> 2-times compared to the control). Perhaps most importantly, the advantageous soil conditions induced by the combined biochar and manure addition also resulted in significantly increased sugar contents in plants (2.4-times) pointing to immediate practical applications of these results in the field.


Assuntos
Beta vulgaris , Esterco , Carvão Vegetal , Desidratação , Humanos , Solo , Sacarose
14.
Chemosphere ; 291(Pt 1): 133000, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808200

RESUMO

The United Nations estimates the rate of deforestation over 10 million hectares per year, with additional infested wood available due to drought, bark beetle calamity and other damage vectors. Processing the hard-to-reach infested wood into biochar via mobile pyrolysis units seems to be a good option for fire prevention. However, since most biochar is currently produced mainly from biological waste, there is not enough experience with wood biochar on a large scale. Review of current knowledge, followed by techno-economic assessment reveals that following the chemical composition of the feedstock, wood biochar outperforms other types of biochar in terms of high porosity. Therefore, wood biochar shows excellent results in increasing the amount of plant-available water content in soil and appears to be an excellent tool for recycling nutrients (especially into plant-available forms of phosphorus and nitrogen). The overall positive effects of biochar application change from abiotic to biotic over time because as it decays, many of its physical properties disappear, but it can boost soil microbial communities on which soil fertility depends. As global climate change creates a wide range of factors that damage forest cover, wood biochar consequently represents untapped potential in the field of soil, nutrient, and energy management.


Assuntos
Poluentes do Solo , Madeira , Carvão Vegetal , Solo
15.
J Hazard Mater ; 424(Pt A): 127136, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879539

RESUMO

The current demand for alternative water sources requires the incorporation of low-cost composites in remediation technologies. These represent a sustainable alternative to more expensive, commercially used adsorbents. The main objective of this comprehensive field-scale study was to incorporate the layered double hydroxides (LDHs) into the hybrid biochar-based composites and apply an innovative material to remediate As/Sb-rich mine waters. The presence of hydrous Fe oxides (HFOs) within the composite enhanced the total adsorption efficiency of the composite for As(V) and Sb(V). The kinetic data fitted a pseudo-second order model. Equilibrium experiments confirmed that the composite had a stronger interaction with As(V) than with Sb(V). The efficient removal of As(V) from mine water was achieved in both batch and continuous flow column systems, reaching up to 98% and 80%, respectively. Sb(V) showed different behavior to As(V) during mine water treatment, reaching adsorption efficiencies of up to 39% and 26% in batch and column experiments, respectively. The migration of Sb(V) in mine water was mostly attributed to its dispersion before it was able to show affinity to the composite. In general, the proposed column technology is suitable for the field remediation of small volumes of contaminated water, and thus has significant commercial potential.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Hidróxidos , Cinética , Poluentes Químicos da Água/análise
16.
Bioresour Technol ; 346: 126581, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923078

RESUMO

The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Compostos de Manganês , Óxidos , Água
17.
Environ Res ; 189: 109865, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678730

RESUMO

The present study aimed to envisage the effect of physicochemical properties on the performance of Gliricidia sepium biochar (GBC) pyrolyzed at 300, 500, and 700 °C in the removal caffeine (CFN); a pharmaceutical and personal care product, from water. The physicochemical properties of GBC were characterized by proximate and ultimate analysis, BET, SEM, FTIR, and Raman spectroscopy. The adsorption batch experiment was carried out at various pH values (pH 3-10), mixing times (up to 24 h), and initial CFN concentration (10-500 mg/L). The FTIR analysis revealed the loss of polar functional groups on the surface of GBC derived at high temperatures. The red-shifted and blue-shifted Raman peaks indicate the condensation of small molecules on GBC. The GBC derived at 700 °C demonstrated high CFN adsorption capacity (16.26 mg/g) due to its high surface area and aromaticity. The highest adsorption of CFN was occurred at acidic pH range from 3.5 to 4.5 due to the existence of non-specific attraction between CFN and GBC. The kinetics and isotherm experimental data were fitted with Elovich and fractional power kinetic regression, Freundlich, and Temkin isotherm models, which suggested the adsorption of CFN on the GBC by mixed mechanisms; physisorption and chemisorption including π-π interactions, hydrogen bonding, n-π interactions, electrostatic attraction, and electron donor-acceptor attraction. Moreover, both surface area and aromaticity index have demonstrated a high positive correlation for CFN adsorption, signifying the importance of controlling physicochemical properties based on the end-user purpose of biochar.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Cafeína , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Temperatura
18.
Sci Total Environ ; 741: 140440, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615435

RESUMO

Lead (Pb) and copper (Cu) contamination seriously threatens agricultural production and food safety. This study aims to investigate Pb and Cu induced hormetic effect and toxicity mechanisms in lettuce (Lactuca sativa L.) and establish reliable empirical models of potentially toxic elements (PTEs) transfer in the soil-plant system. The content and distribution of Pb and Cu at subcellular levels in lettuce plants were examined using inductively coupled plasma-mass spectrometry, differential centrifugation and micro-X-ray fluorescence spectroscopy. The PTE-loaded capacity of Pb that ensures food safety was lower than that of Cu in the studied soil, but the PTE-loaded capacity of Pb that limits yield was higher than that of Cu. Lead in lettuce roots mainly accumulated in the cell wall (41%), while Cu mainly accumulated in the vacuoles (46%). The Pb and Cu were primarily distributed in the radicle of lettuce seeds under severe PTE stress, resulting in no seed development. Iron plaque formed on the root surface of lettuce seedlings and sequestered Pb and Cu via chelation. At the same concentration, lettuce was less tolerant to Cu in contaminated soil than Pb due to the higher activity of Cu ions in the soil. Lead was more phytotoxic to lettuce than Cu, however, since the radicle emerged from the seed under severe Cu levels, while it did not protrude under severe Pb levels. The potentially damaging effect of Pb in the visually healthy lettuce appeared to be higher than that of Cu under the same soil contamination level.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Cobre , Chumbo , Lactuca , Solo
19.
J Hazard Mater ; 393: 122479, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369890

RESUMO

Stabilized cementitious aggregates AG were produced from wood ashes containing ∼10,000 mg kg-1 As, Cr and Cu, then amended to two agricultural pasture soils. Metal(loid) leaching (column tests), mobility (pore water extracts) and uptake to ryegrass was determined, comparing raw ashes with aggregates. Risk modeling was applied to selected data to inform wider discussion of the experimental results. Under rapid leaching (7 h) AG 2 (pre-strengthened with CO2) outperformed AG 1 in suppressing soluble metal(loid) removal. During prolonged leaching (12d) both aggregates were susceptible to mild dissolution/release of metal(loid)s upon acidification. Pore water sampled from the pot test indicated that Cr was generally most mobile, As least so, reduced furthest by AG 2. Risk modelling, based on pot experimental data, demonstrated soil specific accumulation of As in beef muscle and milk, being furthest reduced (compared to the raw ash addition) by AG 2 in soil A, but increased in soil B by the same treatment. The results of this study indicate that a reduction in soluble As, Cr and Cu can be achieved through cementitious aggregation of wood ashes, though the extent is metal(loid) specific when amended to soils. Pre-testing under local soil conditions before field application would be required to ensure that metal(loid) mobility remained suppressed.

20.
Chemosphere ; 242: 125255, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896180

RESUMO

A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Carvão Vegetal/química , Compostagem , Lolium/crescimento & desenvolvimento , Metais/análise , Madeira/química , Biodegradação Ambiental , Biomassa , Brassicaceae/química , Lolium/química , Modelos Teóricos , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...