Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705491

RESUMO

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Assuntos
Envelhecimento , Encéfalo , Modelos Animais de Doenças , Síndrome de Down , Animais , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Envelhecimento/fisiologia , Camundongos , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Cognição/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Camundongos Transgênicos
2.
Sci Adv ; 9(46): eadh1110, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967196

RESUMO

Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.


Assuntos
Actinas , Hipocampo , Camundongos , Animais , Actinas/metabolismo , Hipocampo/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Fosforilação/fisiologia , Plasticidade Neuronal/fisiologia
3.
EBioMedicine ; 97: 104849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898095

RESUMO

BACKGROUND: Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS: We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS: GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION: Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING: '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.


Assuntos
Hexoquinase , Doença de Huntington , Adulto , Criança , Humanos , Encéfalo/metabolismo , Estudos de Casos e Controles , Fibroblastos/metabolismo , Hexoquinase/metabolismo , Doença de Huntington/genética
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108445

RESUMO

Biliverdin reductase-A (BVRA) is involved in the regulation of insulin signaling and the maintenance of glucose homeostasis. Previous research showed that BVRA alterations are associated with the aberrant activation of insulin signaling in dysmetabolic conditions. However, whether BVRA protein levels change dynamically within the cells in response to insulin and/or glucose remains an open question. To this aim, we evaluated changes of intracellular BVRA levels in peripheral blood mononuclear cells (PBMC) collected during the oral glucose tolerance test (OGTT) in a group of subjects with different levels of insulin sensitivity. Furthermore, we looked for significant correlations with clinical measures. Our data show that BVRA levels change dynamically during the OGTT in response to insulin, and greater BVRA variations occur in those subjects with lower insulin sensitivity. Changes of BVRA significantly correlate with indexes of increased insulin resistance and insulin secretion (HOMA-IR, HOMA-ß, and insulinogenic index). At the multivariate regression analysis, the insulinogenic index independently predicted increased BVRA area under curve (AUC) during the OGTT. This pilot study showed, for the first time, that intracellular BVRA protein levels change in response to insulin during OGTT and are greater in subjects with lower insulin sensitivity, supporting the role of BVR-A in the dynamic regulation of the insulin signaling pathway.


Assuntos
Resistência à Insulina , Insulina , Humanos , Glicemia/metabolismo , Glucose , Insulina/metabolismo , Resistência à Insulina/fisiologia , Insulina Regular Humana , Leucócitos Mononucleares/metabolismo , Projetos Piloto
5.
Antioxidants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36670973

RESUMO

Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.

6.
Free Radic Biol Med ; 183: 1-13, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283228

RESUMO

The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Síndrome de Down , Fator 2 Relacionado a NF-E2 , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ácidos Cafeicos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Álcool Feniletílico/análogos & derivados
7.
Alzheimers Dement ; 18(8): 1498-1510, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812584

RESUMO

INTRODUCTION: Intellectual disability, accelerated aging, and early-onset Alzheimer-like neurodegeneration are key brain pathological features of Down syndrome (DS). Although growing research aims at the identification of molecular pathways underlying the aging trajectory of DS population, data on infants and adolescents with DS are missing. METHODS: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy donors (HDs, n = 17) and DS children (n = 18) from 2 to 17 years of age and nEV content was interrogated for markers of insulin/mTOR pathways. RESULTS: nEVs isolated from DS children were characterized by a significant increase in pIRS1Ser636 , a marker of insulin resistance, and the hyperactivation of the Akt/mTOR/p70S6K axis downstream from IRS1, likely driven by the higher inhibition of Phosphatase and tensin homolog (PTEN). High levels of pGSK3ßSer9 were also found. CONCLUSIONS: The alteration of the insulin-signaling/mTOR pathways represents an early event in DS brain and likely contributes to the cerebral dysfunction and intellectual disability observed in this unique population.


Assuntos
Doença de Alzheimer , Síndrome de Down , Vesículas Extracelulares , Deficiência Intelectual , Adolescente , Doença de Alzheimer/patologia , Criança , Síndrome de Down/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Lactente , Insulina , Serina-Treonina Quinases TOR/metabolismo
8.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916835

RESUMO

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acilação , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Masculino , Camundongos , Mitocôndrias/patologia
9.
Methods Mol Biol ; 2261: 79-91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420986

RESUMO

Posttranslational modifications (PTMs) of a protein are chemical modifications that play a key role because they regulate almost all cellular events, including gene expression, signal transduction, protein-protein interaction, cell-cell interaction, and communication. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. PTMs reversibly or irreversibly alter the structure and properties of proteins through biochemical reactions, thus extending protein function beyond what is dictated by gene transcripts. As analytical approaches have evolved, the biological influences of many types of PTMs have been identified and are routinely analyzed in many systems.Among several types of PTMs, polyubiquitination-addition of ubiquitin (often in the form of polymers) to substrates-governs a variety of biological processes ranging from proteolysis to DNA damage response. The functional flexibility of this modification correlates with the existence of a large number of ubiquitinating enzymes that form distinct ubiquitin polymers, which in turn result in different signals. Thus, the need of specific and sensitive methods for the analysis of the complexity of ubiquitin chain linkage is needed to understand how this structural diversity could translate into various cellular functions. In this section, we described a detailed protocol to enrich polyubiquitinated proteins.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Eletroforese em Gel Bidimensional , Proteômica , Proteínas Ubiquitinadas/análise , Métodos Analíticos de Preparação de Amostras , Animais , Modelos Animais de Doenças , Humanos , Espectrometria de Massas , Proteólise , Ubiquitinação
10.
Free Radic Biol Med ; 165: 152-170, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33516914

RESUMO

Dysregulation of brain insulin signaling with reduced downstream neuronal survival and plasticity mechanisms are fundamental abnormalities observed in Alzheimer disease (AD). This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the inhibition of IRS1. Since Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration in DS and whether they contribute to early onset AD in DS. We evaluated levels and activation of proteins belonging to the insulin signaling pathway (IR, IRS1, BVR-A, MAPK, PTEN, Akt, GSK3ß, PKCζ, AS160, GLUT4) in the frontal cortex of Ts65dn (DS model) (n = 5-6/group) and euploid mice (n = 6/group) at different ages (1, 3, 9 and 18 months). Furthermore, we analyzed whether changes of brain insulin signaling were associated with alterations of: (i) proteins regulating brain energy metabolism (mitochondrial complexes, hexokinase-II, Sirt1); (ii) oxidative stress (OS) markers (iii) APP cleavage; and (iv) proteins mediating synaptic plasticity mechanisms (PSD95, syntaxin-1 and BDNF). Ts65dn mice showed an overall impairment of the above-mentioned pathways, mainly characterized by defects of proteins activation state. Such alterations start early in life (at 1 month, during brain maturation). In particular, accumulation of inhibited IRS1, together with the uncoupling among the proteins downstream from IRS1 (brain insulin resistance), characterize Ts65dn mice. Furthermore, reduced levels of mitochondrial complexes and Sirt1, as well as increased indices of OS also were observed. These alterations precede the accumulation of APP-C99 in Ts65dn mice. Tellingly, oxidative stress levels were negatively associated with IR, IRS1 and AS160 activation as well as mitochondrial complexes levels in Ts65dn mice, suggesting a role for oxidative stress in the observed alterations. We propose that a close link exists among brain insulin resistance, mitochondrial defects and OS that contributes to brain dysfunctions observed in DS, likely favoring the development of AD in DS.


Assuntos
Síndrome de Down , Resistência à Insulina , Animais , Encéfalo , Modelos Animais de Doenças , Síndrome de Down/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo
11.
Prog Neurobiol ; 196: 101892, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795489

RESUMO

A major challenge in neurobiology is the identification of the mechanisms by which protein misfolding leads to cellular toxicity. Many neurodegenerative disorders, in which aberrant protein conformers aggregate into pathological inclusions, present the chronic activation of the PERK branch of the unfolded protein response. The adaptive effects of the PERK pathway include reduction of translation by transient inhibition of eIF2α and antioxidant protein production via induction of Nrf2 transcription factor. In contrast, PERK prolonged activation leads to sustained reduction in protein synthesis and induction of cell death pathways. To further investigate the role of the PERK pathway in neurodegenerative disorders, we focused on Down syndrome (DS), in which aging confers a high risk of Alzheimer disease (AD). By investigating human DS frontal cortices, we found early and sustained PERK activation associated with the induction of eIF2α and ATF4 downstream signals. We also observed that the Nrf2 response is uncoupled from PERK and its antioxidant effects are repressed in a mechanism implicating the transcription repressor Bach1. The pharmacological inhibition of PERK in DS mice reduced eIF2α-related translational repression and promoted Nrf2 nuclear translocation, favoring the rescue of Nrf2/Bach1 imbalance. The further analysis of peripheral cells from living DS individuals provided strong support of the pathological link between PERK and trisomy 21. Our results suggest that failure to regulate the PERK pathway is a peculiar characteristic of DS pathology and it may represent an essential step to promote cellular dysfunction, which actively contributes in the brain to the early development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Síndrome de Down/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autopsia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Adulto Jovem
12.
J Endocrinol Invest ; 44(5): 979-988, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32852705

RESUMO

INTRODUCTION: Dipeptidyl peptidase 4 (DPP4) levels are associated to metabolic and cardiovascular diseases in humans; initial evidence reported a relationship between DPP4 and chronic liver diseases. Aim of this study was to investigate hepatic and systemic DPP4 levels/activity in relation to NAFLD/NASH in individuals with and without metabolic disease. METHODS: We recruited fifty-two obese individuals undergoing bariatric surgery and intra-operative liver biopsy at Sapienza University, Rome, Italy. The association between DPP4 levels/activity and NAFLD was also evaluated in 126 non-obese individuals recruited in the same setting. RESULTS: NAFLD patients had significantly higher circulating DPP4 activity than no-NAFLD in both the obese and non-obese cohorts; plasma DPP4 activity and levels linearly correlated with steatosis grade and inflammation at the liver biopsy. Hepatic DPP4 mRNA was not associated to either its circulating levels/activity or NAFLD. In the multivariate logistic regression analysis on all the study participants (n = 178), higher circulating DPP4 activity was associated with NAFLD independently of potential confounders with OR (95% CI): 3.5 (1.2-10.21), p = 0.022. CONCLUSIONS: This study demonstrates the coexistence of increased plasma DPP4 levels and activity in NAFLD. Circulating DPP4 measurement may represent a novel cost-effective strategy for NAFLD/NASH risk stratification and a potential tool for monitoring disease's progression in established NAFLD.


Assuntos
Dipeptidil Peptidase 4 , Fígado , Hepatopatia Gordurosa não Alcoólica , Obesidade , Cirurgia Bariátrica/métodos , Biomarcadores/sangue , Biomarcadores/metabolismo , Biópsia/métodos , Fatores de Risco Cardiometabólico , Análise Custo-Benefício , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/metabolismo , Progressão da Doença , Feminino , Humanos , Itália/epidemiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/cirurgia , Gravidade do Paciente , Medição de Risco/métodos
13.
Neurotherapeutics ; 18(1): 340-363, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258073

RESUMO

Protein O-GlcNAcylation is a nutrient-related post-translational modification that, since its discovery some 30 years ago, has been associated with the development of neurodegenerative diseases. As reported in Alzheimer's disease (AD), flaws in the cerebral glucose uptake translate into reduced hexosamine biosynthetic pathway flux and subsequently lead to aberrant protein O-GlcNAcylation. Notably, the reduction of O-GlcNAcylated proteins involves also tau and APP, thus promoting their aberrant phosphorylation in AD brain and the onset of AD pathological markers. Down syndrome (DS) individuals are characterized by the early development of AD by the age of 60 and, although the two conditions present the same pathological hallmarks and share the alteration of many molecular mechanisms driving brain degeneration, no evidence has been sought on the implication of O-GlcNAcylation in DS pathology. Our study aimed to unravel for the first time the role of protein O-GlcNacylation in DS brain alterations positing the attention of potential trisomy-related mechanisms triggering the aberrant regulation of OGT/OGA cycle. We demonstrate the disruption of O-GlcNAcylation homeostasis, as an effect of altered OGT and OGA regulatory mechanism, and confirm the relevance of O-GlcNAcylation in the appearance of AD hallmarks in the brain of a murine model of DS. Furthermore, we provide evidence for the neuroprotective effects of brain-targeted OGA inhibition. Indeed, the rescue of OGA activity was able to restore protein O-GlcNAcylation, and reduce AD-related hallmarks and decreased protein nitration, possibly as effect of induced autophagy.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Proteínas tau/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Síndrome de Down/patologia , Feminino , Imunofluorescência , Imunoprecipitação , Masculino , Camundongos , N-Acetilglucosaminiltransferases/efeitos dos fármacos , Piranos/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Tiazóis/farmacologia , beta-N-Acetil-Hexosaminidases/efeitos dos fármacos
14.
Cell Death Dis ; 11(11): 1012, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243973

RESUMO

Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenilato Quinase/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Adenocarcinoma de Pulmão/patologia , Movimento Celular , Humanos
15.
Antioxidants (Basel) ; 9(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839417

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability that is associated with an increased risk to develop early-onset Alzheimer-like dementia (AD). The brain neuropathological features include alteration of redox homeostasis, mitochondrial deficits, inflammation, accumulation of both amyloid beta-peptide oligomers and senile plaques, as well as aggregated hyperphosphorylated tau protein-containing neurofibrillary tangles, among others. It is worth mentioning that some of the triplicated genes encoded are likely to cause increased oxidative stress (OS) conditions that are also associated with reduced cellular responses. Published studies from our laboratories propose that increased oxidative damage occurs early in life in DS population and contributes to age-dependent neurodegeneration. This is the result of damaged, oxidized proteins that belong to degradative systems, antioxidant defense system, neuronal trafficking. and energy metabolism. This review focuses on a key element that regulates redox homeostasis, the transcription factor Nrf2, which is negatively regulated by BACH1, encoded on chromosome 21. The role of the Nrf2/BACH1 axis in DS is under investigation, and the effects of triplicated BACH1 on the transcriptional regulation of Nrf2 are still unknown. In this review, we discuss the physiological relevance of BACH1/Nrf2 signaling in the brain and how the dysfunction of this system affects the redox homeostasis in DS neurons and how this axis may contribute to the transition of DS into DS with AD neuropathology and dementia. Further, some of the evidence collected in AD regarding the potential contribution of BACH1 to neurodegeneration in DS are also discussed.

16.
Microorganisms ; 8(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610629

RESUMO

Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.

17.
Neuropsychopharmacology ; 45(11): 1931-1941, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32353860

RESUMO

Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell ("frustration stress"). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg-1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


Assuntos
Transtorno da Compulsão Alimentar , Animais , Transtorno da Compulsão Alimentar/tratamento farmacológico , Ingestão de Alimentos , Endocanabinoides , Feminino , Frustração , Ácidos Oleicos , Ratos
18.
Oxid Med Cell Longev ; 2020: 5497046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308803

RESUMO

Protein homeostasis or proteostasis is an essential balance of cellular protein levels mediated through an extensive network of biochemical pathways that regulate different steps of the protein quality control, from the synthesis to the degradation. All proteins in a cell continuously turn over, contributing to development, differentiation, and aging. Due to the multiple interactions and connections of proteostasis pathways, exposure to stress conditions may cause various types of protein damage, altering cellular homeostasis and disrupting the entire network with additional cellular stress. Furthermore, protein misfolding and/or alterations during protein synthesis results in inactive or toxic proteins, which may overload the degradation mechanisms. The maintenance of a balanced proteome, preventing the formation of impaired proteins, is accomplished by two major catabolic routes: the ubiquitin proteasomal system (UPS) and the autophagy-lysosomal system. The proteostasis network is particularly important in nondividing, long-lived cells, such as neurons, as its failure is implicated with the development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These neurological disorders share common risk factors such as aging, oxidative stress, environmental stress, and protein dysfunction, all of which alter cellular proteostasis, suggesting that general mechanisms controlling proteostasis may underlay the etiology of these diseases. In this review, we describe the major pathways of cellular proteostasis and discuss how their disruption contributes to the onset and progression of neurodegenerative diseases, focusing on the role of oxidative stress.


Assuntos
Doenças Neurodegenerativas/genética , Estresse Oxidativo/genética , Proteostase/genética , Humanos
19.
Neurobiol Dis ; 137: 104772, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987911

RESUMO

Dysregulation of insulin signaling pathway with reduced downstream neuronal survival and plasticity mechanisms is a fundamental abnormality observed in Alzheimer's disease (AD) brain. This phenomenon, known as brain insulin resistance, is associated with poor cognitive performance and is driven by the uncoupling of insulin receptor (IR) from its direct substrate (IRS1). Considering that Down syndrome (DS) and AD neuropathology share many common features, we investigated metabolic aspects of neurodegeneration, i.e., brain insulin resistance, in DS and whether it would contribute to early onset AD in DS population. Changes of levels and activation of main brain proteins belonging to the insulin signaling pathway (i.e., IR, IRS1, PTEN, GSK3ß, PKCζ, AS160, GLUT4) were evaluated. Furthermore, we analyzed whether changes of these proteins were associated with alterations of: (i) proteins regulating brain energy metabolism; (ii) APP cleavage; and (ii) regulation of synaptic plasticity mechanisms in post-mortem brain samples collected from people with DS before and after the development of AD pathology (DSAD) compared with their age-matched controls. We found that DS cases were characterized by key markers of brain insulin resistance (reduced IR and increased IRS1 inhibition) early in life. Furthermore, downstream from IRS1, an overall uncoupling among the proteins of insulin signaling was observed. Dysregulated brain insulin signaling was associated with reduced hexokinase II (HKII) levels and proteins associated with mitochondrial complexes levels as well as with reduced levels of syntaxin in DS cases. Tellingly, these alterations precede the development of AD neuropathology and clinical presentations in DS. We propose that markers of brain insulin resistance rise earlier with age in DS compared with the general population and may contribute to the cognitive impairment associated with the early development of AD in DS.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Resistência à Insulina/fisiologia , Adolescente , Adulto , Idoso , Doença de Alzheimer/complicações , Criança , Pré-Escolar , Síndrome de Down/complicações , Síndrome de Down/patologia , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
20.
Cancers (Basel) ; 12(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906275

RESUMO

The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...