Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432052

RESUMO

Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Sistemas Automatizados de Assistência Junto ao Leito , Óxidos , Semicondutores
2.
Nanoscale ; 13(28): 12279-12287, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34251003

RESUMO

Rapid diagnosis of preeclampsia is necessary to ensure timely administration of appropriate care and prevent the potentially catastrophic complications of the condition affecting both mothers and babies. While the diagnostic superiority of angiogenic blood biomarkers such as placental growth factor has recently been demonstrated, there is an urgent need to develop point-of-care (PoC) technologies that allow rapid, quantitative, and accurate testing for these markers within local communities. Towards addressing this need, here we report on a fully integrated biodiagnostic platform based on nanoscale indium oxide field effect transistor (FET) sensors. The high-performance FET sensors are integrated with blood sample processing cartridges that minimize the need for operator intervention during the assay and eliminate the need for analytical equipment. Within 40 minutes and from 30 µL of blood, the FET platform could reliably measure PlGF with a limit of detection of 0.06 pg mL-1 and a five order of magnitudes dynamic range. Pilot clinical validation in four preeclamptic pregnancies confirmed that the accuracy and reliability of the FET platform, paving the way for further development to a much-needed point-of-care preeclampsia testing.


Assuntos
Pré-Eclâmpsia , Biomarcadores , Feminino , Humanos , Fator de Crescimento Placentário , Testes Imediatos , Pré-Eclâmpsia/diagnóstico , Gravidez , Reprodutibilidade dos Testes
3.
Sensors (Basel) ; 19(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650578

RESUMO

Surface plasmon enhanced light scattering (SP-LS) is a powerful new sensing SPR modality that yields excellent sensitivity in sandwich immunoassay using spherical gold nanoparticle (AuNP) tags. Towards further improving the performance of SP-LS, we systematically investigated the AuNP size effect. Simulation results indicated an AuNP size-dependent scattered power, and predicted the optimized AuNPs sizes (i.e., 100 and 130 nm) that afford extremely high signal enhancement in SP-LS. The maximum scattered power from a 130 nm AuNP is about 1700-fold higher than that obtained from a 17 nm AuNP. Experimentally, a bio-conjugation protocol was developed by coating the AuNPs with mixture of low and high molecular weight PEG molecules. Optimal IgG antibody bioconjugation conditions were identified using physicochemical characterization and a model dot-blot assay. Aggregation prevented the use of the larger AuNPs in SP-LS experiments. As predicted by simulation, AuNPs with diameters of 50 and 64 nm yielded significantly higher SP-LS signal enhancement in comparison to the smaller particles. Finally, we demonstrated the feasibility of a two-step SP-LS protocol based on a gold enhancement step, aimed at enlarging 36 nm AuNPs tags. This study provides a blue-print for the further development of SP-LS biosensing and its translation in the bioanalytical field.


Assuntos
Técnicas Biossensoriais , Imunoensaio/métodos , Nanopartículas Metálicas/química , Difusão Dinâmica da Luz , Ouro/química , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Ressonância de Plasmônio de Superfície
4.
RSC Adv ; 9(70): 41058-41065, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540071

RESUMO

In the present work, we investigate systematically the electronic and optical properties of Janus ZrSSe using first-principles calculations. Our calculations demonstrate that the Janus ZrSSe monolayer is an indirect semiconductor at equilibrium. The band gap of the Janus ZrSSe is 1.341 eV using the Heyd-Scuseria-Ernzerhof hybrid functional, larger than the band gap of ZrSe2 monolayer and smaller than that of ZrS2 monolayer. Based on the analysis of the band edge alignment, we confirm that the Janus ZrSSe monolayer possesses photocatalytic activities that can be used in water splitting applications. While strain engineering plays an important role in modulating the electronic properties and optical characteristics of the Janus ZrSSe monolayer, the influence of the external electric field on these properties is negligible. The biaxial strain, ε b, has significantly changed the band of the Janus ZrSSe monolayer, and particularly, the semiconductor-metal phase transition which occurred at ε b = 7%. The Janus ZrSSe monolayer can absorb light in both visible and ultraviolet regions. Also, the biaxial strain has shifted the first optical gap of the Janus ZrSSe monolayer. Our findings provide additional information for the prospect of applying the Janus ZrSSe monolayer in nanoelectronic devices, especially in water splitting technology.

5.
Nanoscale Adv ; 1(12): 4870-4877, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133115

RESUMO

Nanostructured field effect transistor (FET) based sensors have emerged as a powerful bioanalytical technology. However, performance variations across multiple devices and between fabrication batches inevitably exist and present a significant challenge holding back the translation of this cutting-edge technology. We report an optimized and cost-effective fabrication process for high-performance indium oxide nanoribbon FET with a steep subthreshold swing of 80 mV per decade. Through systematic electrical characterizations of 57 indium oxide nanoribbon FETs from different batches, we demonstrate an optimal operation point within the subthreshold regime that mitigates the issue of device-to-device performance variation. A non-linear pH sensing of the fabricated indium oxide nanoribbon FETs is also presented.

6.
Materials (Basel) ; 11(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751688

RESUMO

Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA