Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13389, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862595

RESUMO

While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas Quinases Associadas a Fase S , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Humanos , Transdução de Sinais , Ciclo Celular/genética , Transição Epitelial-Mesenquimal/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
2.
Toxicol Appl Pharmacol ; 486: 116936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641223

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is pivotal in development, metabolic homeostasis, and immune responses. While recent research has highlighted AhR's significant role in modulating oxidative stress responses, its mechanistic relationship with ferroptosis-an iron-dependent, non-apoptotic cell death-remains to be fully elucidated. In our study, we discovered that AhR plays a crucial role in ferroptosis, in part by transcriptionally regulating the expression of the solute carrier family 7 member 11 (SLC7A11). Our findings indicate that both pharmacological inactivation and genetic ablation of AhR markedly enhance erastin-induced ferroptosis. This enhancement is achieved by suppressing SLC7A11, leading to increased lipid peroxidation. We also obtained evidence of post-translational modifications of SLC7A11 during ferroptosis. Additionally, we observed that indole 3-pyruvate (I3P), an endogenous ligand of AhR, protects cells from ferroptosis through an AhR-dependent mechanism. Based on these insights, we propose that AhR transcriptionally regulates the expression of SLC family genes, which in turn play a pivotal role in mediating ferroptosis. This underscores AhR's essential role in suppressing lipid oxidation and ensuring cell survival under oxidative stress.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Humanos , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação da Expressão Gênica , Piperazinas/farmacologia
3.
Toxicol Appl Pharmacol ; 482: 116769, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007072

RESUMO

The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcriptional factor pivotal in responding to environmental stress and maintaining cellular homeostasis. Exposure to specific xenobiotics or industrial compounds in the environment activates AhR and its subsequent signaling, inducing oxidative stress and related toxicity. Past research has also identified and characterized several classes of endogenous ligands, particularly some tryptophan (Trp) metabolic/catabolic products, that act as AhR agonists, influencing a variety of physiological and pathological states, including the modulation of immune responses and cell death. Heavy metals, being non-essential elements in the human body, are generally perceived as toxic and hazardous, originating either naturally or from industrial activities. Emerging evidence indicates that heavy metals significantly influence AhR activation and its downstream signaling. This review consolidates current knowledge on the modulation of the AhR signaling pathway by heavy metals, explores the consequences of co-exposure to AhR ligands and heavy metals, and investigates the interplay between oxidative stress and AhR activation, focusing on the regulation of immune responses and ferroptosis.


Assuntos
Metais Pesados , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Regulação da Expressão Gênica , Transdução de Sinais/fisiologia , Ligantes
4.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497298

RESUMO

Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.

5.
Toxins (Basel) ; 13(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572944

RESUMO

Cyanobacterial blooms and the associated release of cyanotoxins pose problems for many conventional water treatment plants due to their limited removal by typical unit operations. In this study, a conventional water treatment process consisting of coagulation, flocculation, sedimentation, filtration, and sludge dewatering was assessed in lab-scale experiments to measure the removal of microcystin-LR and Microcystis aeruginosa cells using liquid chromatography with mass spectrometer (LC-MS) and a hemacytometer, respectively. The overall goal was to determine the effect of recycling cyanotoxin-laden dewatered sludge supernatant on treated water quality. The lab-scale experimental system was able to maintain the effluent water quality below relevant the United States Environmental Protection Agency (US EPA) and World Health Organisation (WHO) standards for every parameter analyzed at influent concentrations of M. aeruginosa above 106 cells/mL. However, substantial increases of 0.171 NTU (Nephelometric Turbidity Unit), 7 × 104 cells/L, and 0.26 µg/L in turbidity, cyanobacteria cell counts, and microcystin-LR concentration were observed at the time of dewatered supernatant injection. Microcystin-LR concentrations of 1.55 µg/L and 0.25 µg/L were still observed in the dewatering process over 24 and 48 h, respectively, after the initial addition of M.aeruginosa cells, suggesting the possibility that a single cyanobacterial bloom may affect the filtered water quality long after the bloom has dissipated when sludge supernatant recycling is practiced.


Assuntos
Água Potável/microbiologia , Proliferação Nociva de Algas , Toxinas Marinhas/isolamento & purificação , Microcistinas/isolamento & purificação , Microcystis/isolamento & purificação , Esgotos/microbiologia , Microbiologia da Água , Purificação da Água , Qualidade da Água , Precipitação Química , Cromatografia Líquida , Filtração , Espectrometria de Massas , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Nefelometria e Turbidimetria
6.
Environ Toxicol Chem ; 37(12): 3018-3024, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242895

RESUMO

Silver nanoparticles (Ag-NPs) are ubiquitous in household and medical products because of their antimicrobial activity. A consequence of the high volume of Ag-NP production and usage is increased amounts of Ag-NPs released into the environment. Their small size (1-100 nm) results in unique physiochemical properties that may increase toxicity relative to their bulk counterpart. Therefore, the goal of the present study was to assess the potential toxicity of environmentally relevant concentrations of Ag-NPs in zebrafish (Danio rerio). Wild-type tropical 5D zebrafish embryos were exposed to Ag-NPs from 4 to 120 h postfertilization at 0.03, 0.1, 0.3, 1, and 3 ppm (mg/L). Inductively coupled plasma-mass spectrometry confirmed concentration-dependent uptake of Ag into zebrafish as well as bioaccumulation over time. A morphological assessment revealed no significant hatching impairment, morphological abnormalities, or mortality at any concentration or time point examined. However, assessment of photomotor behavior at 3 d postfertilization (dpf) revealed significant hyperactivity in the 0.3, 1, and 3 ppm Ag-NP treatment groups. At 4 dpf, significant hyperactivity was observed only in the 3 ppm treatment group, whereas 5 dpf larvae exposed to Ag-NPs displayed no significant abnormalities in photomotor behavior. These findings suggest that nonteratogenic concentrations of Ag-NPs are capable of causing transient behavioral changes during development. Environ Toxicol Chem 2018;37:3018-3024. © 2018 SETAC.


Assuntos
Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Natação/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Comportamento Animal/efeitos dos fármacos , Escuridão , Larva/efeitos dos fármacos , Larva/fisiologia , Locomoção/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...