Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099646

RESUMO

ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.


Assuntos
Polipose Adenomatosa do Colo , Neuritos , Animais , Criança , Humanos , Camundongos , Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Axônios/metabolismo , Mutação , Neuritos/metabolismo
2.
Cancers (Basel) ; 12(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486480

RESUMO

An emerging theme for Wnt-addicted cancers is that the pathway is regulated at multiple steps via various mechanisms. Infection with hepatitis B virus (HBV) is a major risk factor for liver cancer, as is deregulated Wnt signaling, however, the interaction between these two causes is poorly understood. To investigate this interaction, we screened the effect of the various HBV proteins for their effect on Wnt/ß-catenin signaling and identified the pre-core protein p22 as a novel and potent activator of TCF/ß-catenin transcription. The effect of p22 on TCF/ß-catenin transcription was dose dependent and inhibited by dominant-negative TCF4. HBV p22 activated synthetic and native Wnt target gene promoter reporters, and TCF/ß-catenin target gene expression in vivo. Importantly, HBV p22 activated Wnt signaling on its own and in addition to Wnt or ß-catenin induced Wnt signaling. Furthermore, HBV p22 elevated TCF/ß-catenin transcription above constitutive activation in colon cancer cells due to mutations in downstream genes of the Wnt pathway, namely APC and CTNNB1. Collectively, our data identifies a previously unappreciated role for the HBV pre-core protein p22 in elevating Wnt signaling. Understanding the molecular mechanisms of p22 activity will provide insight into how Wnt signaling is fine-tuned in cancer.

3.
Cell Death Differ ; 26(10): 2074-2085, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30770875

RESUMO

Withdrawal of the growth factor interleukin-3 (IL-3) from IL-3-dependent myeloid cells causes them to undergo Bax/Bak1-dependent apoptosis, whereas factor-deprived Bax-/-Bak1-/- cells remain viable, but arrest and shrink. It was reported that withdrawal of IL-3 from Bax-/-Bak1-/- cells caused decreased expression of the glucose transporter Glut1, leading to reduced glucose uptake, so that arrested cells required Atg5-dependent autophagy for long-term survival. In other cell types, a decrease in Glut1 is mediated by the thioredoxin-interacting protein (Txnip), which is induced in IL-3-dependent myeloid cells when growth factor is removed. We mutated Atg5 and Txnip by CRISPR/Cas9 and found that Atg5-dependent autophagy was not necessary for the long-term viability of cycling or arrested Bax-/-Bak1-/- cells, and that Txnip was not required for the decrease in Glut1 expression in response to IL-3 withdrawal. Surprisingly, Atg5-deficient Bax/Bak1 double mutant cells survived for several weeks in medium supplemented with 10% fetal bovine serum (FBS), without high concentrations of added glucose or glutamine. When serum was withdrawn, the provision of an equivalent amount of glucose present in 10% FBS (~0.5 mM) was sufficient to support cell survival for more than a week, in the presence or absence of IL-3. Thus, Bax-/-Bak1-/- myeloid cells deprived of growth factor consume extracellular glucose to maintain long-term viability, without a requirement for Atg5-dependent autophagy.


Assuntos
Glucose/metabolismo , Glucose/farmacologia , Interleucina-3/deficiência , Células Mieloides/citologia , Células Mieloides/metabolismo , Animais , Apoptose/fisiologia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Sobrevivência Celular/fisiologia , Técnicas de Inativação de Genes , Interleucina-3/metabolismo , Camundongos , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Mol Oncol ; 11(9): 1130-1142, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28544747

RESUMO

Advanced biliary tract cancer (BTC) has a poor prognosis and limited treatment options. The PI3K/Akt/mTOR signalling pathway is hyperactivated in a subset of BTCs, and clinical activity of the mTOR inhibitor everolimus has been observed in some patients with BTC. The goal of this study was to identify biomarkers predictive of everolimus response. Twenty BTC cell lines were assessed for everolimus sensitivity with a spectrum of growth inhibitory responses observed. Molecular biomarkers of sensitivity and resistance were identified by interrogation of the activation status of the Ras/MAPK and PI3K/Akt/mTOR pathways. K-Ras mutations and/or amplifications were identified in 45% of cell lines and were associated with resistance to everolimus. Activating mutations in PIK3CA or loss of PTEN was not predictive of everolimus response; however, high basal levels of pAKT were associated with sensitivity, independent of Ras/MAPK pathway activation status. Notably, everolimus inhibited mTOR signalling to a similar extent in sensitive and resistant cell lines, suggesting that relative dependence on the mTOR pathway rather than the magnitude of pathway inhibition determines everolimus response. Consistent with the known limitations of rapalogs, everolimus induced feedback-mediated activation of AKT in BTC cell lines, which could be overcome by cotreatment with an AKT inhibitor or ATP-competitive mTORC1/mTORC2 inhibitors. However, both approaches failed to induce greater apoptosis compared to everolimus, and mTORC1/mTORC2 kinase inhibitors induced compensatory activation of pERK, identifying an inherent limitation of these agents in BTC cell lines. These findings suggest that future trials of everolimus in BTC would benefit from preselecting patients based on their K-Ras and PI3K/mTOR pathway activation status. The study also identifies strategies for enhancing inhibition of the PI3K/mTOR pathway in BTC cell lines.


Assuntos
Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/genética , Resistencia a Medicamentos Antineoplásicos/genética , Everolimo/uso terapêutico , Amplificação de Genes , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias do Sistema Biliar/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Everolimo/farmacologia , Dosagem de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
Mol Cancer Ther ; 15(6): 1217-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983878

RESUMO

Inhibitors of the bromodomain and extraterminal domain (BET) protein family attenuate the proliferation of several tumor cell lines. These effects are mediated, at least in part, through repression of c-MYC. In colorectal cancer, overexpression of c-MYC due to hyperactive WNT/ß-catenin/TCF signaling is a key driver of tumor progression; however, effective strategies to target this oncogene remain elusive. Here, we investigated the effect of BET inhibitors (BETi) on colorectal cancer cell proliferation and c-MYC expression. Treatment of 20 colorectal cancer cell lines with the BETi JQ1 identified a subset of highly sensitive lines. JQ1 sensitivity was higher in cell lines with microsatellite instability but was not associated with the CpG island methylator phenotype, c-MYC expression or amplification status, BET protein expression, or mutation status of TP53, KRAS/BRAF, or PIK3CA/PTEN Conversely, JQ1 sensitivity correlated significantly with the magnitude of c-MYC mRNA and protein repression. JQ1-mediated c-MYC repression was not due to generalized attenuation of ß-catenin/TCF-mediated transcription, as JQ1 had minimal effects on other ß-catenin/TCF target genes or ß-catenin/TCF reporter activity. BETi preferentially target super-enhancer-regulated genes, and a super-enhancer in c-MYC was recently identified in HCT116 cells to which BRD4 and effector transcription factors of the WNT/ß-catenin/TCF and MEK/ERK pathways are recruited. Combined targeting of c-MYC with JQ1 and inhibitors of these pathways additively repressed c-MYC and proliferation of HCT116 cells. These findings demonstrate that BETi downregulate c-MYC expression and inhibit colorectal cancer cell proliferation and identify strategies for enhancing the effects of BETi on c-MYC repression by combinatorial targeting the c-MYC super-enhancer. Mol Cancer Ther; 15(6); 1217-26. ©2016 AACR.


Assuntos
Azepinas/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Triazóis/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridonas/farmacologia , Pirimidinonas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 289(36): 25306-16, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25037223

RESUMO

The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect.


Assuntos
Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fosfatase Alcalina/genética , Benzamidas/farmacologia , Sítios de Ligação/genética , Western Blotting , Ácido Butírico/farmacologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ilhas de CpG/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Piridinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
PLoS One ; 9(3): e88950, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658684

RESUMO

Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent regulation and cooperation with TGFß signaling pathway. Our findings reveal an unexpectedly widespread and direct role for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in mediating cross talk between oncogenic RAS-ERK and TGFß signaling networks during tumor progression.


Assuntos
Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Humanos , Invasividade Neoplásica/genética , Proteínas Proto-Oncogênicas c-fos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
J Biol Chem ; 288(6): 3753-67, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23277359

RESUMO

The adenomatous polyposis coli (APC) protein functions as a negative regulator of the Wnt signaling pathway. In this capacity, APC forms a "destruction complex" with Axin, CK1α, and GSK3ß to foster phosphorylation of the Wnt effector ß-catenin earmarking it for Lys-48-linked polyubiquitylation and proteasomal degradation. APC is conjugated with Lys-63-linked ubiquitin chains when it is bound to Axin, but it is unclear whether this modification promotes the APC-Axin interaction or confers upon APC an alternative function in the destruction complex. Here we identify HectD1 as a candidate E3 ubiquitin ligase that modifies APC with Lys-63 polyubiquitin. Knockdown of HectD1 diminished APC ubiquitylation, disrupted the APC-Axin interaction, and augmented Wnt3a-induced ß-catenin stabilization and signaling. These results indicate that HectD1 promotes the APC-Axin interaction to negatively regulate Wnt signaling.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina/metabolismo , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Proteína Axina/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Poliubiquitina/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética
10.
J Biol Chem ; 287(34): 28552-63, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22761442

RESUMO

The adenomatous polyposis coli (APC) tumor suppressor forms a complex with Axin and GSK3ß to promote the phosphorylation and degradation of ß-catenin, a key co-activator of Wnt-induced transcription. Here, we establish that APC is modified predominantly with K63-linked ubiquitin chains when it is bound to Axin in unstimulated HEK293 cells. Wnt3a stimulation induced a time-dependent loss of K63-polyubiquitin adducts from APC, an effect synchronous with the dissociation of Axin from APC and the stabilization of cytosolic ß-catenin. RNAi-mediated depletion of Axin or ß-catenin, which negated the association between APC and Axin, resulted in the absence of K63-adducts on APC. Overexpression of wild-type and phosphodegron-mutant ß-catenin, combined with analysis of thirteen human cancer cell lines that harbor oncogenic mutations in APC, Axin, or ß-catenin, support the hypothesis that a fully assembled APC-Axin-GSK3ß-phospho-ß-catenin complex is necessary for the K63-polyubiquitylation of APC. Intriguingly, the degree of this modification on APC appears to correlate inversely with the levels of ß-catenin in cells. Together, our results indicate that K63-linked polyubiquitin adducts on APC regulate the assembly and/or efficiency of the ß-catenin destruction complex.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitinação , beta Catenina/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína Axina/genética , Linhagem Celular Tumoral , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Mutação , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/genética
11.
Mol Biol Cell ; 23(11): 2109-21, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496417

RESUMO

Cell migration occurs by activation of complex regulatory pathways that are spatially and temporally integrated in response to extracellular cues. Binding of adenomatous polyposis coli (APC) to the microtubule plus ends in polarized cells is regulated by glycogen synthase kinase 3ß (GSK-3ß). This event is crucial for establishment of cell polarity during directional migration. However, the role of APC for cellular extension in response to extracellular signals is less clear. Smad7 is a direct target gene for transforming growth factor-ß (TGFß) and is known to inhibit various TGFß-induced responses. Here we report a new function for Smad7. We show that Smad7 and p38 mitogen-activated protein kinase together regulate the expression of APC and cell migration in prostate cancer cells in response to TGFß stimulation. In addition, Smad7 forms a complex with APC and acts as an adaptor protein for p38 and GSK-3ß kinases to facilitate local TGFß/p38-dependent inactivation of GSK-3ß, accumulation of ß-catenin, and recruitment of APC to the microtubule plus end in the leading edge of migrating prostate cancer cells. Moreover, the Smad7-APC complex links the TGFß type I receptor to the microtubule system to regulate directed cellular extension and migratory responses evoked by TGFß.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Movimento Celular , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad7/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Ligação Proteica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/farmacologia , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
PLoS One ; 6(7): e22595, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799911

RESUMO

Canonical Wnt signaling is controlled intracellularly by the level of ß-catenin protein, which is dependent on Axin scaffolding of a complex that phosphorylates ß-catenin to target it for ubiquitylation and proteasomal degradation. This function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation (PARsylation), which destabilizes Axin and promotes signaling. Mechanistically, how tankyrase limits Axin protein accumulation, and how tankyrase levels and activity are regulated for this function, are currently under investigation. By RNAi screening, we identified the RNF146 RING-type ubiquitin E3 ligase as a positive regulator of Wnt signaling that operates with tankyrase to maintain low steady-state levels of Axin proteins. RNF146 also destabilizes tankyrases TNKS1 and TNKS2 proteins and, in a reciprocal relationship, tankyrase activity reduces RNF146 protein levels. We show that RNF146, tankyrase, and Axin form a protein complex, and that RNF146 mediates ubiquitylation of all three proteins to target them for proteasomal degradation. RNF146 is a cytoplasmic protein that also prevents tankyrase protein aggregation at a centrosomal location. Tankyrase auto-PARsylation and PARsylation of Axin is known to lead to proteasome-mediated degradation of these proteins, and we demonstrate that, through ubiquitylation, RNF146 mediates this process to regulate Wnt signaling.


Assuntos
Proteína Axina/metabolismo , Transdução de Sinais , Tanquirases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Wnt/metabolismo , Centrossomo/metabolismo , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteólise , Ubiquitinação
13.
Genes Dev ; 22(4): 528-42, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281465

RESUMO

A key effector of the canonical Wnt pathway is beta-catenin, which binds to TCF/LEF factors to promote the transcription of Wnt target genes. In the absence of Wnt stimulation, beta-catenin is phosphorylated constitutively, and modified with K48-linked ubiquitin for subsequent proteasomal degradation. Here, we identify Trabid as a new positive regulator of Wnt signaling in mammalian and Drosophila cells. Trabid show a remarkable preference for binding to K63-linked ubiquitin chains with its three tandem NZF fingers (Npl4 zinc finger), and it cleaves these chains with its OTU (ovarian tumor) domain. These activities of Trabid are required for efficient TCF-mediated transcription in cells with high Wnt pathway activity, including colorectal cancer cell lines. We further show that Trabid can bind to and deubiquitylate the APC tumor suppressor protein, a negative regulator of Wnt-mediated transcription. Epistasis experiments indicate that Trabid acts below the stabilization of beta-catenin, and that it may affect the association or activity of the TCF-beta-catenin transcription complex. Our results indicate a role of K63-linked ubiquitin chains during Wnt-induced transcription.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Células Cultivadas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Genes APC , Humanos , Imunoprecipitação , Fator 1 de Ligação ao Facilitador Linfoide , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Plasmídeos , Proteínas Proto-Oncogênicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteases Específicas de Ubiquitina/genética , Proteína Wnt1
15.
Mol Cell ; 13(1): 101-11, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14731398

RESUMO

The AU-rich element (ARE) in the 3' untranslated region of unstable mRNAs mediate their rapid degradation. ARE binding proteins (AUBPs) have been described that either stabilize or otherwise degrade ARE-mRNAs by recruiting the exosome, a complex of 3'-to-5' exoribonucleases. We have identified RHAU, a putative DExH RNA helicase that was isolated in association with the ARE of urokinase plasminogen activator mRNA (ARE(uPA)). RHAU physically interacts with the deadenylase PARN and the human exosome and enhances the deadenylation and decay of ARE(uPA)-mRNAs. An alternatively spliced isoform of RHAU that localized to the cytoplasm had a more pronounced effect on ARE(uPA)-mRNA destabilization than full-length RHAU. Furthermore, the ATPase activity of RHAU is essential for its mRNA-destabilizing function. ARE(uPA)-mRNA recognition by RHAU may be mediated through its RNA-dependent interaction with the AUBPs HuR and NFAR1. A model is presented to describe the action of RHAU in ARE(uPA)-directed mRNA turnover.


Assuntos
Antígenos de Superfície , Exorribonucleases/metabolismo , Fosfoproteínas , Isoformas de Proteínas/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Processamento Alternativo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Citoplasma/metabolismo , Regulação para Baixo , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Exorribonucleases/genética , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas do Fator Nuclear 90 , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA Helicases/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
16.
Mol Cell Biol ; 23(20): 7177-88, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14517288

RESUMO

The mRNAs of urokinase plasminogen activator (uPA) and its receptor, uPAR, contain instability-determining AU-rich elements (AREs) in their 3' untranslated regions. The cellular proteins binding to these RNA sequences (ARE(uPA/uPAR)) are not known. We show here that the mRNA-stabilizing factor HuR functionally interacts with these sequences. HuR stabilized an ARE(uPA)-containing RNA substrate in vitro and stabilized in HeLa Tet-off cells both endogenous uPA and uPAR mRNAs and a beta-globin reporter mRNA containing the ARE(uPA). RNAi-mediated depletion of HuR in BT-549 and MDA-MB-231 cells significantly reduced the steady-state levels of endogenous uPA and uPAR mRNAs. Furthermore, we show that a constitutively active form of mitogen-activated protein kinase-activated protein kinase 2 (MK2), MK2-EE, has an ARE-mRNA-stabilizing effect that correlates with its ability to enhance the cytoplasmic accumulation of endogenous HuR, but not in cells cotransfected with a dominant negative version of MK2, MK2-K76R. These effects were mimicked by hydrogen peroxide treatment (oxidative stress), which resulted in the phosphorylation of endogenous MK2. In addition, hydrogen peroxide treatment enhanced the cytoplasmic binding of HuR to the ARE(uPA), which was abrogated in cells transfected with MK2-K76R. These results indicate a role for HuR and MK2 in regulating the expression of uPA and uPAR genes at the posttranscriptional level.


Assuntos
Antígenos de Superfície , Citoplasma/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Superfície Celular/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Northern Blotting , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Ativação Enzimática , Genes Dominantes , Vetores Genéticos , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência , Modelos Genéticos , Estresse Oxidativo , Testes de Precipitina , Ligação Proteica , Proteínas Serina-Treonina Quinases , RNA/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...