Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 116(3): 921-941, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609706

RESUMO

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Assuntos
Arabidopsis , Brassicaceae , Brassicaceae/fisiologia , Arabidopsis/fisiologia , Flores , Estresse Salino , Estresse Fisiológico , Água
2.
Nat Plants ; 8(5): 549-560, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35501452

RESUMO

The phytohormone abscisic acid (ABA) is a central regulator of acclimation to environmental stress; however, its contribution to differences in stress tolerance between species is unclear. To establish a comparative framework for understanding how stress hormone signalling pathways diverge across species, we studied the growth response of four Brassicaceae species to ABA treatment and generated transcriptomic and DNA affinity purification and sequencing datasets to construct a cross-species gene regulatory network (GRN) for ABA. Comparison of genes bound directly by ABA-responsive element binding factors suggests that cis-factors are most important for determining the target loci represented in the ABA GRN of a particular species. Using this GRN, we reveal how rewiring of growth hormone subnetworks contributes to stark differences in the response to ABA in the extremophyte Schrenkiella parvula. Our study provides a model for understanding how divergence in gene regulation can lead to species-specific physiological outcomes in response to hormonal cues.


Assuntos
Arabidopsis , Brassicaceae , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas/metabolismo
3.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663666

RESUMO

Schrenkiella parvula is an extremophyte adapted to various abiotic stresses, including multiple ion toxicity stresses. Despite high-quality genomic resources available to study how plants adapt to environmental stresses, its value as a functional genomics model and tool has been limited by the lack of a feasible transformation system. In this protocol, we report how to generate stable transgenic S. parvula lines using an Agrobacterium-mediated floral-dip method. We modified the transformation protocol used for A. thaliana to account for unique traits of S. parvula, such as an indeterminate flowering habit and a high epicuticular wax content on leaves. Briefly, S. parvula seeds were stratified at 4 °C for five days before planting. Plants were grown at a photoperiod of a 14 h light and 10 h dark and a 130 µmol m-2s-1 light intensity, at 22 °C to 24 °C. Eight to nine week-old plants with multiple inflorescences were selected for transformation. These inflorescences were dipped in an infiltration solution of Agrobacterium tumefaciens GV3101 carrying the pMP90RK plasmid. We performed two rounds of flower dipping with an interval of three to four weeks to increase the transformation efficiency. The T1 seeds were collected and dried for four weeks in a container with desiccants before germination to screen for candidate transformed lines. Resistance to BASTA was used to screen T1 plants. We sprayed the BASTA solution three times with an interval of three days starting at two week-old plants to reduce false positives. A BASTA drop test was performed on surviving individual plants to identify true positive transformants. The transformation efficiency was 0.033%, yielding 3-4 transgenic plants per 10,000 T1 seeds propagated.


Assuntos
Brassicaceae/fisiologia , Agrobacterium tumefaciens/genética , Flores , Germinação , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Plasmídeos , Sementes/genética
4.
Plant Physiol Biochem ; 132: 475-489, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30292980

RESUMO

Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.


Assuntos
Chenopodiaceae/crescimento & desenvolvimento , Chenopodiaceae/genética , Extremófilos/crescimento & desenvolvimento , Extremófilos/genética , Plântula/crescimento & desenvolvimento , Plântula/genética , Transcriptoma/genética , Amaranthaceae/genética , Regulação para Baixo/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metaboloma , Anotação de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
5.
Plant Physiol ; 177(2): 615-632, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724770

RESUMO

Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC.


Assuntos
Mesembryanthemum/citologia , Mesembryanthemum/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Poliploidia , Plantas Tolerantes a Sal/citologia , Tamanho Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Mesembryanthemum/fisiologia , Células Vegetais , Folhas de Planta/citologia , Raízes de Plantas/genética , Salinidade , Estresse Salino/genética , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA