Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 24(15): 3267-75, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27301675

RESUMO

One of the hurdles in the discovery of antibiotics is the difficulty of linking antibacterial compounds to their cellular targets. Our laboratory has employed a genome-wide approach of over-expressing essential genes in order to identify cellular targets of antibacterial inhibitors. Our objective in this project was to develop and validate a more sensitive disk diffusion based platform of target identification (Target Identification Platform for Antibacterials version 2; TIPA II) using a collection of cell clones in an Escherichia coli mutant (AS19) host with increased outer membrane permeability. Five known antibiotics/inhibitors and 28 boron heterocycles were tested by TIPA II assay, in conjunction with the original assay TIPA. The TIPA II was more sensitive than TIPA because eight boron heterocycles previously found to be inactive to AG1 cells in TIPA assays exhibited activity to AS19 cells. For 15 boron heterocycles, resistant colonies were observed within the zones of inhibition only on the inducing plates in TIPA II assays. DNA sequencing confirmed that resistant clones harbor plasmids with fabI gene as insert, indicating that these boron heterocycles all target enoyl ACP reductase. Additionally, cell-based assays and dose response curved obtained indicated that for two boron heterocycle inhibitors, the fabI cell clone in AG1 (wild-type) host cells exhibited at least 11 fold more resistance under induced conditions than under non-induced conditions. Moreover, TIPA II also identified cellular targets of known antibacterial inhibitors triclosan, phosphomycin, trimethoprim, diazaborine and thiolactomycin, further validating the utility of the new system.


Assuntos
Compostos de Boro/química , Compostos Heterocíclicos/química , Compostos de Boro/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia
2.
Chem Biodivers ; 11(9): 1381-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25238079

RESUMO

A set of 2-acylated 2,3,1-benzodiazaborines and some related boron heterocycles were synthesized, characterized, and tested for antibacterial activity against Escherichia coli and Mycobacterium smegmatis. By high-field solution NMR, the heretofore unknown class of 2-acyl-1-hydroxy-2,3,1-diazaborines has been found to be able to exist in several interconvertable structural forms along a continuum comprised of an open hydrazone a, a monomeric B-hydroxy diazaborine b, and an anhydro dimer c. X-Ray crystallography of one of the anhydro dimers, 17c, revealed it to have an unprecedented structure featuring a double intramolecular O→B chelation. The crystal structure of another compound, 37, showed it to be based on a new pentacyclic B heterocycle framework. Nine compounds were found to possess activities against E. coli, and two others were active against M. smegmatis. The finding that these two contain isoniazid covalently embedded in their structures suggests that they might possibly be acting as prodrugs of this well-known antituberculosis agent in vivo.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Acilação , Antibacterianos/síntese química , Compostos de Boro/síntese química , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...