Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-10, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37650511

RESUMO

The production of chitin generates wastewater containing high content of organic compounds, nutrients, and salinity, thus a biofilm system including anaerobic-anoxic-aerobic bioreactors was employed. This study aims to evaluate the performance of Stick-bed Biofix and Swim-bed Biofringe added to bioreactors as a biomass carrier in order to enhance biomass concentration. The results indicated that the organic removal has been insignificantly affected by high salinity, the removal efficiency was obtained at 95 ± 2% corresponding to a rate of 5.78 ± 1.10 kg COD/m3/d. Otherwise, the nitrogen removal rate was achieved at around 0.45 ± 0.17 kg N/m3/d and strongly decreased to 0.24 ± 0.10 kg N/m3/d under high salinity of 18,000 mg/L and a high loading rate of 1.03 ± 0.10 kg N/m3/d. Phosphorus removal was obtained at 0.032-0.057 kg P/m3/d and decreased by 1.5 times when the salinity is over 10,000 mg/L although the influent load was strongly reduced by pre-treatment. Besides, the biofilm system can also remove around 50% of calcium ions which causes high salinity in chitin production wastewater.

2.
Polymers (Basel) ; 12(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155925

RESUMO

Chitin production wastewater contains nutrient-rich organic and mineral contents. Coagulation of the wastewater with a natural coagulant such as by-product chitosan would be an economical and environmentally friendly method of treatment. This study investigated the treatment efficiencies of a preliminary sedimentation process followed by coagulation. The removal efficiencies for wastewater parameters were evaluated and compared for coagulants including by-product chitosan, polyaluminum chloride, and polyacryamide. The evaluation was based on the removal of wastewater turbidity and other criteria, including tCOD, sCOD, TKN, NH4+-N, TP, TSS, calcium, and crude protein. The results showed that the preliminary sedimentation (before coagulation) can remove over 80% of turbidity and more than 93% of TSS at pH 4 in 30 min. At optimal conditions, when the ratio of crude protein and calcium was 4.95, by-product chitosan dose of 77.5 mg·L-1 and pH = 8.3, the wastewater characteristics changes were tCOD 23%, sCOD 32%, TKN and ammonium 25%, TP 90%, TSS 84%, Ca2+ 29%, and crude protein 25%. The residue recovered through coagulation consists of up to 55 mg·g-1 crude protein, which is used for animal feed or crop fertilizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...