Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 14(1): 4, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095552

RESUMO

Antimicrobial resistant pathogens are a global health threat driven by the indiscriminate use of antimicrobials. Antimicrobial resistance can be acquired by resistance genes encoded by mobile genetic elements. In this study, we identified a strain of Salmonella enterica serovar Gallinarum (SG4021) from an infected chicken in Korea and characterized the presence of resistance genes in its plasmid by whole genome sequencing. The sequence was then compared with that of a plasmid (P2) from strain SG_07Q015, the only other strain of S. Gallinarum isolated in Korea for which a genome sequence is available. The results revealed that both strains harbored nearly identical DNA carrying antibiotic resistance gene cassettes inserted into integron In2 of the transposable element Tn21, namely an aadA1 resistance gene conferring resistance to aminoglycosides and a sul1 resistance gene conferring resistance to sulfonamide. Interestingly, despite the presence of sul1 in SG4021, an antibiotic sensitivity test revealed that it was sensitive to sulfonamides. Further analysis revealed that this disparity was due to the insertion of a ~ 5 kb ISCR16 sequence downstream of the promoter driving sul1 expression in SG4021. Using various mutants, we showed that the insertion of ISCR16 blocked the expression of the sul1 gene from the upstream promoter. Therefore, the functionality of antimicrobial resistance genes determines phenotypic antimicrobial resistance.

2.
Cancers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900277

RESUMO

Bacterial cancer therapy is a promising next-generation modality to treat cancer that often uses tumor-colonizing bacteria to deliver cytotoxic anticancer proteins. However, the expression of cytotoxic anticancer proteins in bacteria that accumulate in the nontumoral reticuloendothelial system (RES), mainly the liver and spleen, is considered detrimental. This study examined the fate of the Escherichia coli strain MG1655 and an attenuated strain of Salmonella enterica serovar Gallinarum (S. Gallinarum) with defective ppGpp synthesis after intravenous injection into tumor-bearing mice (~108 colony forming units/animal). Approximately 10% of the injected bacteria were detected initially in the RES, whereas approximately 0.01% were in tumor tissues. The bacteria in the tumor tissue proliferated vigorously to up to 109 colony forming units/g tissue, whereas those in the RES died off. RNA analysis revealed that tumor-associated E. coli activated rrnB operon genes encoding the rRNA building block of ribosome needed most during the exponential stage of growth, whereas those in the RES expressed substantially decreased levels of this gene and were cleared soon presumably by innate immune systems. Based on this finding, we engineered ΔppGpp S. Gallinarum to express constitutively a recombinant immunotoxin comprising TGFα and the Pseudomonas exotoxin A (PE38) using a constitutive exponential phase promoter, the ribosomal RNA promoter rrnB P1. The construct exerted anticancer effects on mice grafted with mouse colon (CT26) or breast (4T1) tumor cells without any notable adverse effects, suggesting that constitutive expression of cytotoxic anticancer protein from rrnB P1 occurred only in tumor tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA