Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672854

RESUMO

The aim of this study was to assess the impact of production parameters on the reproducibility of kombucha fermentation over several production cycles based on backslopping. Six conditions with varying oxygen accessibility (specific interface surface) and initial acidity (through the inoculation rate) of the cultures were carried out and compared to an original kombucha consortium and a synthetic consortium assembled from yeasts and bacteria isolated from the original culture. Output parameters monitored were microbial populations, biofilm weight, key physico-chemical parameters and metabolites. Results highlighted the existence of phases in microbial dynamics as backslopping cycles progressed. The transitions between phases occurred faster for the synthetic consortium compared to the original kombucha. This led to microbial dynamics and fermentative kinetics that were reproducible over several cycles but that could also deviate and shift abruptly to different behaviors. These changes were mainly induced by an increase in the Saccharomyces cerevisiae population, associated with an intensification of sucrose hydrolysis, sugar consumption and an increase in ethanol content, without any significant acceleration in the rate of acidification. The study suggests that the reproducibility of kombucha fermentations relies on high biodiversity to slow down the modulations of microbial dynamics induced by the sustained rhythm of backslopping cycles.

2.
J Phys Chem Lett ; 15(13): 3646-3652, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530933

RESUMO

Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.

3.
Food Res Int ; 179: 114027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342547

RESUMO

Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.


Assuntos
Ácido Cítrico , Malatos , Oenococcus , Vinho , Fermentação , Vinho/análise , Açúcares , Concentração de Íons de Hidrogênio
4.
J Sci Food Agric ; 104(8): 4561-4572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319871

RESUMO

BACKGROUND: Consumers of boiled cassava in Africa, Latin America and Asia use specific preference criteria to evaluate its cooking quality, in terms of texture, colour and taste. To improve adoption rates of improved cassava varieties intended for consumption after boiling, these preference criteria need to be determined, quantified and integrated as post-harvest quality traits in the target product profile of boiled cassava, so that breeding programs may screen candidate varieties based on both agronomic traits and consumer preference traits. RESULTS: Surveys of various end-user groups identified seven priority quality attributes of boiled cassava covering root preparation, visual aspect, taste and texture. Three populations of contrasted cassava genotypes, from good-cooking to bad-cooking, in three countries (Uganda, Benin, Colombia) were then characterized according to these quality attributes by sensory quantitative descriptive analysis (QDA) and by standard instrumental methods. Consumers' preferences of the texture attributes mealiness and hardness were also determined. By analysis of correlations, the consumers' preferences scores were translated into thresholds of acceptability in terms of QDA scores, then in terms of instrumental measurements (water absorption during boiling and texture analysis). The thresholds of acceptability were used to identify among the Colombian and Benin populations promising genotypes for boiled cassava quality. CONCLUSION: This work demonstrates the steps of determining priority quality attributes for boiled cassava and establishing their corresponding quantitative thresholds of acceptability. The information can then be included in boiled cassava target product profiles used by cassava breeders, for better selection and adoption rates of new varieties. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Culinária , Genótipo , Manihot , Paladar , Manihot/genética , Manihot/química , Humanos , Colômbia , Benin
5.
J Phys Chem A ; 128(8): 1457-1465, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358308

RESUMO

Photoionized and electronically excited ethylene C2H4+ can undergo H-loss, H2-loss, and ethylene-ethylidene isomerization, where the latter entails a hydrogen migration. Recent pioneering experiments with few-femtosecond extreme ultraviolet pulses and complementary theoretical studies have shed light on the photodynamics of this prototypical organic cation. However, no theoretical investigation based on dynamics simulations reported to date has described the mechanisms and time scales of dissociation and isomerization. Herein, we simulate the coupled electron-nuclear dynamics of ethylene following vertical ionization and electronic excitation to its four lowest-lying cationic states. The electronic structure is treated at the CASSCF level, with an active space large enough to describe bond breaking and formation. The simulations indicate that dissociation and isomerization take place mainly on the cationic ground state and allow the probing of previous hypotheses concerning the correlation between the photochemical outcome and the traversed conical intersections. The results, moreover, support the long-standing view that H2-loss may occur from the ethylidene form. However, the ethylene-ethylidene isomerization time predicted by the simulations is considerably longer than those previously inferred from indirect experimental measurements.

6.
J Sci Food Agric ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37961830

RESUMO

BACKGROUND: Cassava roots are widely consumed in tropical regions of Asia, Africa, and Latin America. Although the protein, vitamin, carotenoid, and mineral content in the leaves makes them a nutritionally attractive option, their consumption is limited due to their high levels of cyanogenic compounds (CCs). In this study, the CC content in different parts of the plant (leaves, storage root cortex, and parenchyma) was assessed at harvest for 50 landrace genotypes representative of cassava diversity in Latin America. The changes in CC in leaves at different physiological ages (3, 6, 9, and 11 months after planting) were also investigated. RESULTS: The average CC was higher in the cortex (804 ppm) and leaves (655 ppm) than in root parenchyma (305 ppm). Genotypes from different regions of Latin America, as identified by seven genetic diversity groups, differed significantly in CC levels. The Andean and Amazon groups had, respectively, the lowest (P = 0.0008) and highest (P < 0.0001) CC levels in all three parts of the plants. Cyanogenic compound concentrations were higher in leaves from young plants (P < 0.0001) and decreased with increasing physiological age. CONCLUSION: The results help to guide the selection of parental lines with low CC levels for breeding and to contribute to the expanded use of cassava and its by-products for food and feed. Cassava for fresh consumption, especially, requires varieties with low total CC content, especially in the root cortex and parenchyma. COL1108 (204, 213, and 174 ppm, respectively, in the parenchyma, cortex, and leaves) and PER297 (83, 238, and 299 ppm, respectively, in the parenchyma, cortex, and leaves) can fulfill this requirement. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
J Sci Food Agric ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872724

RESUMO

Roots, tubers and bananas (RTBs) contribute immensely to food security and livelihoods in sub-Saharan Africa, Asia and Latin America. The adoption of RTB genotypes in these regions relies on the interplay among agronomic traits, ease of processing and consumer preference. In breeding RTBs, until recently little attention was accorded key textural traits preferred by consumers. Moreover, a lack of standard, discriminant, repeatable protocols that can be used to measure the textural traits deter linkages between breeding better RTB genotypes and end user/consumer preferences. RTB products texture - that is, behaviour of RTB food products under unique deformations, such as disintegration and the flow of a food under force - is a critical component of these preferences. The preferences consumers have for certain product texture can be evaluated from expert sensory panel and consumer surveys, which are useful tools in setting thresholds for textural traits, and inform breeders on what to improve in the quality of RTBs. Textural characterization of RTBs under standard operating procedures (SOPs) is important in ensuring the standardization of texture measurement conditions, predictability of textural quality of RTBs, and ultimately definition of RTB food product profiles. This paper reviews current SOPs for the textural characterization of RTBs, including their various associated methods, parameters, challenges and merits. Case studies of texture characterized during development of SOPs and evaluation of texture of RTB populations are discussed, together with insights into key textural attributes and correlations between instrumental, sensory and consumer assessment of texture unique to various RTB food products. Hardness was considered a universal key textural attribute to discriminate RTBs. The review should provide adequate insight into texture of RTB food products and critical factors in their measurement. It aims to promote inclusion of texture in breeding pipelines by investigating which textural traits are prioritized by consumers, particularly since the inclusion of textural traits has recently gained prominence by breeders in improving RTBs. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687381

RESUMO

Accurate dry matter determination (DM) in Hass avocados is vital for optimal harvesting and ensuring fruit quality. Predictive models based on NIRS need to capture fruit DM gradient. This work aimed to determine the DM content in Hass avocado whole by NIRS scanning different fruit zones. Spectra were recorded for each zone of the fruit: peduncle (P), equator (E), and base (B). The calibration and validation included fruit from different orchards in two harvest cycles. The results show a DM gradient within the fruit: 24.47% (E), 24.68% (B), and 24.79% (P). The DM gradient was observed within the spectra using the RMSi (root mean square) criterion and PCA. The results show that at least one spectrum per fruit zone was needed to represent the variability within the fruit. The performances of the calibration using the whole set of data were R2: 0.74 and standard error of cross-validation (SECV) = 1.18%. In the validation stage using independent validation sets, the models showed similar performance (R2: 0.75, SECV 1.15%) with low values of the standard error of prediction (SEP): 1.62%. These results demonstrate the potential of near-infrared spectroscopy for high-throughput sorting of avocados based on their commercial quality.

9.
J Sci Food Agric ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559127

RESUMO

BACKGROUND: Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) are mainly related to their texture. Different raw and cooked RTBs were physiochemically characterized to determine the effect of biochemical components on their cooking properties. RESULTS: Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively, respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly reduced GalA. CONCLUSION: The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and major components (i.e. starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+ . © 2023 Bill and Melinda Gates Foundation. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
J Sci Food Agric ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406186

RESUMO

BACKGROUND: The consumption of foods such as sweet potato and cassava with high levels of carotenoids is a possible solution to reduce vitamin A deficiency. In this study, we evaluated the kinetics of thermal degradation of carotenoids. The content of carotenoids was quantified by high-performance liquid chromatography, first in fresh material, then in flour and finally in bakery products using mixtures of wheat, sweet potato and cassava. The degree of acceptance of the bakery products by children was also assessed through a sensory acceptance test. RESULTS: The study found that the degradation of carotenoid compounds in sweet potato followed first-order kinetics and fitted the Arrhenius equation with correlations of R2 > 0.9. The retention rates of all-trans-ß-carotene were 77%, 56% and 48% at cooking temperatures of 75, 85 and 95 °C respectively, during a cooking time of 20 min. The concentrations of all-trans-ß-carotene, after baking, for bread, cookies and cake were 15, 19 and 14 µg g-1 db, respectively. In a sensory acceptance test carried out in a school, 47.6% of the boys and 79.2% of the girls rated the cookies made from a mixture of cassava, sweet potato and wheat flour with the indicator I like it a lot. CONCLUSION: The content of carotenoid compounds was reduced by exposure to high temperatures and long cooking times. The combinations of cooking time and temperature which minimized degradation of all-trans-ß-carotene occurred at 75 °C-20 min and 95 °C-10 min. All-trans-ß-carotene retentions for bread, cookies and cake were 25%, 15% and 11% respectively. The mixture of wheat, sweet potato and cassava flour can be considered in the development of cookies with positive contributions of all-trans-ß-carotenes and with a good acceptance by children between 9 and 13 years old. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

11.
J Sci Food Agric ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127918

RESUMO

BACKGROUND: Most rheological analyses in yam have been done on starch gels, which requires starch extraction from the tubers. In situ rheology bypasses the need of starch extraction and relies on the original cell structure and complex matrix organization under stress or strain. Dynamic rheological properties of tuber from 16 accessions belonging to four yam species (Dioscorea rotundata, D. alata. D. bulbifera and D. dumetorum) were investigated for potential use as a medium throughput phenotyping screening tool that can indicate the quality of yam food products or their industrial potentials. RESULTS: Rheographs of the tubers illustrated differences in the structure of D. bulbifera compared to other yam species. High initial storage modulus (G') of yam parenchyma indicated tubers with strong and rigid structure which do not lose their structural integrity easily on heating. Dioscorea rotundata and D. alata varieties exhibited a lower temperature at which gelatinization took place (Tgel ) equivalent to the irreversible transition during starch gelatinization (75.3 and 79.8 °C) and took shorter time (867 and 958 s, respectively) to reach the G' maximum, compared to other species. The stress relaxation test showed that the higher the dry matter of the tubers, the higher the work to rupture the structure. CONCLUSION: Rheological characteristics G', loss modulus (G″), swelling capacity and Tgel showed potential as suitable quality indicators for yam products. In situ rheological characterization of yam tubers could be used as an instrumental screening tool to phenotype for quality in yam products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

12.
J Sci Food Agric ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226655

RESUMO

The 5-year project 'Breeding roots, tubers and banana products for end user preferences' (RTBfoods) focused on collecting consumers' preferences on 12 food products to guide breeding programmes. It involved multidisciplinary teams from Africa, Latin America, and Europe. Diverse data types were generated on preferred qualities of users (farmers, family and entrepreneurial processors, traders or retailers, and consumers). Country-based target product profiles were produced with a comprehensive market analysis, disaggregating gender's role and preferences, providing prioritised lists of traits for the development of new plant varieties. We describe the approach taken to create, in the roots, tubers, and banana breeding databases, a centralised and meaningful open access to sensory information on food products and genotypes. Biochemical, instrumental textural, and sensory analysis data are then directly connected to the specific plant record while user survey data, bearing personal information, were analysed, anonymised, and uploaded in a repository. Names and descriptions of food quality traits were added into the Crop Ontology for labelling data in the databases, along with the various methods of measurement used by the project. The development and application of standard operating procedures, data templates, and adapted trait ontologies improved the data quality and its format, enabling the linking of these to the plant material studied when uploaded in the breeding databases or in repositories. Some modifications to the database model were necessary to accommodate the food sensory traits and sensory panel trials. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

13.
J Sci Food Agric ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086039

RESUMO

BACKGROUND: The purpose of this study was to investigate the potential of hyperspectral imaging for the characterization of cooking quality parameters, dry matter content (DMC), water absorption (WAB), and texture in cassava genotypes contrasting for their cooking quality. RESULTS: Hyperspectral images were acquired on cooked and fresh intact longitudinal and transversal slices from 31 cassava genotypes harvested in March 2022 in Colombia. Different chemometric methods were tested for the quantification of DMC, WAB, and texture parameters. Data analysis was conducted through partial least squares regression, K nearest neighbors regression, support vector machine regression and CovSel multiple linear regression (CovSel_MLR). Efficient performances were obtained for DMC using CovSel_MLR with, coefficient of multiple determination R p 2 = 0.94 $$ {R}_p^2=0.94 $$ , root-mean-square error of prediction RMSEP = 0.96 g/100 g, and ratio of the standard deviation values RPD = 3.60. High heterogeneity was observed between contrasting genotypes. The predicted distribution of DMC within the root can be homogeneous or heterogeneous depending on the genotype. Weak predictions were obtained for WAB and texture parameters. CONCLUSIONS: This study showed that hyperspectral imaging could be used as a high-throughput phenotyping tool for the visualization of DMC in contrasting cooking quality genotypes. Further improvement of protocols and larger datasets are required for WAB and texture quality traits. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

14.
J Sci Food Agric ; 103(1): 389-399, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35897139

RESUMO

BACKGROUND: The isosteric heat of desorption is vital in evaluating the energy performance of food dryers. The isosteric heat of desorption was investigated for different cassava (Manihot esculenta Crantz) products prepared as flour or starch, with and without fermentation. An automated moisture sorption gravimetric analyser was used to measure the desorption isotherms over 10-90% relative humidity of the drying air at temperatures ranging from 25 to 65 °C. RESULTS: Analysis of variance showed an imperceptible contribution of the preparation method in the measured desorption data. This finding also agreed with microscopical images, which revealed the lack of compelling structural differences among different products. A set of empirical sorption equations suggested by the ASAE standard was examined over the measured desorption isotherms. The standard error of estimation was found to be in the acceptable range of 2.36-3.71%. Furthermore, the fulfilment of the enthalpy-entropy compensation theory was considered as an additional criterion in the thermodynamic results of different sorption equations, besides their fitting adequacy. The modified Chung-Pfost equation has proved to be the most suitable equation for cassava products, as it is capable of reflecting the temperature dependency of the isosteric heat of desorption. The net isosteric heat of desorption obtained was in the range of 540-1110 kJ kg-1 for 0.10 kg kg-1 dry-basis moisture content and 52-108 kJ kg-1 for 0.25 kg kg-1 dry-basis moisture content. CONCLUSION: These findings are technologically relevant for optimising common drying technologies such as flash and flatbed dryers. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Manihot , Manihot/química , Temperatura Alta , Água/análise , Farinha/análise , Temperatura , Verduras
15.
Phys Chem Chem Phys ; 24(44): 27038-27046, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36321485

RESUMO

UV and VUV-induced processes in DNA/RNA nucleobases are central to understand photo-damaging and photo-protecting mechanisms in our genetic material. Here we model the events following photoionisation and electronic excitation in uracil, methylated in the 1' and 3' positions, using the correlated XMS-CASPT2 method. We compare our results against those for uracil and 5-methyl-uracil (thymine) previously published. We find 3-methylation, an epigenetic modification in non-negligible amounts, shows the largest differences in photoionised decay of all three derivatives studied compared to uracil itself. At the S0 minimum, 3-methyl-uracil (3mUra) shows almost degenerate excited cation states. Upon populating the cation manifold, a crossing is predicted featuring different topography compared to other methylated uracil species in this study. We find an effective 3-state conical intersection accessible for 3mUra+, which points towards an additional pathway for radiationless decay. 3-Methylation reduces the potential energy barrier mediating decay to the cation ground state, making it vanish and leading to a pathway that we expect will contribute to the fastest radiationless decay amongst all methylated uracil species studied to date. 1- and 5-methylation, on the other hand, give differences from uracil in detail only: ionisation potentials are slightly red-shifted and the potential energy barrier mediating decay to the cation ground state is small but almost unchanged. By comparing against CASSCF calculations, we establish XMS-CASPT2 is essential to correctly describe conical intersections for 3mUra+. Our calculations show how a chemical modification that seems relatively small electronically can nevertheless have a significant impact on the behaviour of electronic excited states: a single methylation in the 3' position alters the behaviour of the RNA base uracil and appears to open an additional pathway for radiationless decay following ionisation and electronic excitation.


Assuntos
Timina , Uracila , Metilação , RNA
16.
Food Funct ; 13(18): 9254-9267, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35980275

RESUMO

Amylose-free and wild-type cassava starches were fermented for up to 30 days and oven- or sun-dried. The specific volume (ν) after baking was measured in native and fermented starches. The average ν (across treatments) for waxy starch was 3.5 times higher than that in wild-type starches (17.6 vs. 4.8 cm3 g-1). The best wild-type starch (obtained after fermentation and sun-drying) had considerably poorer breadmaking potential than native waxy cassava (8.4 vs. 16.4 cm3 g-1, respectively). The best results were generally obtained through the synergistic combination of fermentation (for about 10-14 days) and sun-drying. Fermentation reduced viscosities and the weight average molar mass led to denser macromolecules and increased branching degree, which are linked to a high loaf volume. The absence of amylose, however, was shown to be a main determinant as well. Native waxy starch (neutral in taste, gluten-free, and considerably less expensive than the current alternatives to cassava) could become a new ingredient for the formulation of clean label-baked or fried expanded products.


Assuntos
Manihot , Amilopectina , Amilose , Dieta Livre de Glúten , Amido
17.
J Chem Phys ; 156(24): 244114, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778090

RESUMO

In this work, we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states using the quantum Ehrenfest method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the "normal modes" of the electron dynamics. We observe an isomorphic relationship between the electron dynamics normal modes and the nuclear dynamics, seen in the vibrational normal modes. The FT spectra obtained this way show bands that are characteristic of the energy differences between the adiabatic hole states. These bands contain individual peaks that are in one-to-one correspondence with atom pair (+·) ↔ (·+) resonances, which, in turn, stimulate nuclear motion involving the atom pair. With such understanding, we anticipate "designer" coherent superpositions that can drive nuclear motion in a particular direction.


Assuntos
Elétrons , Glicina , Cátions , Eletrônica , Movimento (Física)
18.
Front Microbiol ; 13: 836617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387069

RESUMO

Microbiological, chemical, and sensory analyses were coupled to understand the origins of kombucha organoleptic compounds and their implication in the flavor of the kombucha beverage. By isolating microorganisms from an original kombucha and comparing it to monocultures and cocultures of two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and an acetic acid bacterium (Acetobacter indonesiensis), interaction effects were investigated during the two phases of production. 32 volatile compounds identified and quantified by Headspace-Solid Phase-MicroExtraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS) were classified according to their origin from tea or microorganisms. Many esters were associated to H. valbyensis, while alcohols were associated to both yeasts, acetic acid to A. indonesiensis, and saturated fatty acids to all microorganisms. Concentration of metabolites were dependent on microbial activity, yeast composition, and phase of production. Sensory analysis showed that tea type influenced the olfactive perception, although microbial composition remained the strongest factor. Association of B. bruxellensis and A. indonesiensis induced characteristic apple juice aroma.

19.
Food Microbiol ; 105: 104024, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473977

RESUMO

Oxygen plays a key role in kombucha production, since the production of main organic acids, acetic and gluconic acids, is performed through acetic acid bacteria's oxidative metabolism. Oxygen consumption during traditional kombucha production was investigated by comparing kombucha to mono and cocultures in sugared tea of microorganisms isolated from kombucha. Two yeasts, Brettanomyces bruxellensis and Hanseniaspora valbyensis and one acetic acid bacterium Acetobacter indonesiensis were used. Results showed that tea compounds alone were mainly responsible for oxygen depletion during the first 24 h following inoculation. During the first 7 days phase of production in open vessel, the liquid surface was therefore the only access to oxygen for microorganisms, as anaerobic conditions were sustained below this area. During the 5 days second phase of production after bottling, comparison of cultures with different microbial compositions showed that oxygen was efficiently depleted in the head space of the bottles in 3-6 h if the acetic acid bacterium was present. Lower access to oxygen after bottling stimulated ethanol production in B. bruxellensis and H. valbyensis cocultures with or without A. indonesiensis. This study provides insights into the management of oxygen and the roles of the tea and the biofilm during kombucha production.


Assuntos
Ácido Acético , Bactérias , Ácido Acético/metabolismo , Fermentação , Oxigênio/metabolismo , Chá/microbiologia
20.
Metabolites ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323678

RESUMO

Kombucha is a fermented beverage obtained through the activity of a complex microbial community of yeasts and bacteria. Exo-metabolomes of kombucha microorganisms were analyzed using FT-ICR-MS to investigate their interactions. A simplified set of microorganisms including two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and one acetic acid bacterium (Acetobacter indonesiensis) was used to investigate yeast-yeast and yeast-acetic acid bacterium interactions. A yeast-yeast interaction was characterized by the release and consumption of fatty acids and peptides, possibly in relationship to commensalism. A yeast-acetic acid bacterium interaction was different depending on yeast species. With B. bruxellensis, fatty acids and peptides were mainly produced along with consumption of sucrose, fatty acids and polysaccharides. In opposition, the presence of H. valbyensis induced mainly the decrease of polyphenols, peptides, fatty acids, phenolic acids and putative isopropyl malate and phenylpyruvate and few formulae have been produced. With all three microorganisms, the formulae involved with the yeast-yeast interactions were consumed or not produced in the presence of A. indonesiensis. The impact of the yeasts' presence on A. indonesiensis was consistent regardless of the yeast species with a commensal consumption of compounds associated to the acetic acid bacterium by yeasts. In detail, hydroxystearate from yeasts and dehydroquinate from A. indonesiensis were potentially consumed in all cases of yeast(s)-acetic acid bacterium pairing, highlighting mutualistic behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...