Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Dev Nutr ; 8(5): 102144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726027

RESUMO

Background: Maternal overweight and obesity has been associated with poor lactation performance including delayed lactogenesis and reduced duration. However, the effect on human milk composition is less well understood. Objectives: We evaluated the relationship of maternal BMI on the human milk metabolome among Guatemalan mothers. Methods: We used data from 75 Guatemalan mothers who participated in the Household Air Pollution Intervention Network trial. Maternal BMI was measured between 9 and <20 weeks of gestation. Milk samples were collected at a single time point using aseptic collection from one breast at 6 mo postpartum and analyzed using high-resolution mass spectrometry. A cross-sectional untargeted high-resolution metabolomics analysis was performed by coupling hydrophilic interaction liquid chromatography (HILIC) and reverse phase C18 chromatography with mass spectrometry. Metabolic features associated with maternal BMI were determined by a metabolome-wide association study (MWAS), adjusting for baseline maternal age, education, and dietary diversity, and perturbations in metabolic pathways were identified by pathway enrichment analysis. Results: The mean age of participants at baseline was 23.62 ± 3.81 y, and mean BMI was 24.27 ± 4.22 kg/m2. Of the total metabolic features detected by HILIC column (19,199 features) and by C18 column (11,594 features), BMI was associated with 1026 HILIC and 500 C18 features. Enriched pathways represented amino acid metabolism, galactose metabolism, and xenobiotic metabolic metabolism. However, no significant features were identified after adjusting for multiple comparisons using the Benjamini-Hochberg false discovery rate procedure (FDRBH < 0.2). Conclusions: Findings from this untargeted MWAS indicate that maternal BMI is associated with metabolic perturbations of galactose metabolism, xenobiotic metabolism, and xenobiotic metabolism by cytochrome p450 and biosynthesis of amino acid pathways. Significant metabolic pathway alterations detected in human milk were associated with energy metabolism-related pathways including carbohydrate and amino acid metabolism.This trial was registered at clinicaltrials.gov as NCT02944682.

2.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195004

RESUMO

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Assuntos
Cádmio , Metaloproteinase 2 da Matriz , Humanos , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Lipoilação , Pulmão , Transdução de Sinais , Fibrose , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo
3.
Metabolomics ; 20(1): 6, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095785

RESUMO

INTRODUCTION: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD: We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS: Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION: In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Gravidez , Recém-Nascido , Feminino , Hidrocarbonetos Policíclicos Aromáticos/urina , Estudos Transversais , Metabolômica , Metaboloma , Aminoácidos/metabolismo
4.
Nutrition ; 116: 112160, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566924

RESUMO

OBJECTIVES: High-resolution metabolomics enables global assessment of metabolites and molecular pathways underlying physiologic processes, including substrate utilization during the fasted state. The clinical index for substrate utilization, respiratory exchange ratio (RER), is measured via indirect calorimetry. The aim of this pilot study was to use metabolomics to identify metabolic pathways and plasma metabolites associated with substrate utilization in healthy, fasted adults. METHODS: This cross-sectional study included 33 adults (mean age 27.7 ± 4.9 y, mean body mass index 24.8 ± 4 kg/m2). Participants underwent indirect calorimetry to determine resting RER after an overnight fast. Untargeted metabolomics was performed on fasted plasma samples using dual-column liquid chromatography and ultra-high-resolution mass spectrometry. Linear regression and pathway enrichment analyses identified pathways and metabolites associated with substrate utilization measured with indirect calorimetry. RESULTS: RER was significantly associated with 1389 metabolites enriched within 13 metabolic pathways (P < 0.05). Lipid-related findings included general pathways, such as fatty acid activation, and specific pathways, such as C21-steroid hormone biosynthesis and metabolism, butyrate metabolism, and carnitine shuttle. Amino acid pathways included those central to metabolism, such as glucogenic amino acids, and pathways needed to maintain reduction-oxidation reactions, such as methionine and cysteine metabolism. Galactose and pyrimidine metabolism were also associated with RER (all P < 0.05). CONCLUSIONS: The fasting plasma metabolome reflects the diverse macronutrient pathways involved in carbohydrate, amino acid, and lipid metabolism during the fasted state in healthy adults. Future studies should consider the utility of metabolomics to profile individual nutrient requirements and compare findings reported here to clinical populations.


Assuntos
Aminoácidos , Metabolômica , Adulto , Humanos , Adulto Jovem , Estudos Transversais , Projetos Piloto , Metabolômica/métodos , Aminoácidos/metabolismo , Metaboloma
5.
Environ Int ; 178: 108112, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517180

RESUMO

Breast cancer is now the most common cancer globally, accounting for 12% of all new annual cancer cases worldwide. Despite epidemiologic studies having established a number of risk factors, knowledge of chemical exposure risks is limited to a relatively small number of chemicals. In this exposome research study, we used non-targeted, high-resolution mass spectrometry of pregnancy cohort biospecimens in the Child Health and Development Studies to test for associations with breast cancer identified via the California Cancer Registry. Second and third trimester archival samples were analyzed from 182 women who subsequently developed breast cancer and 384 randomly selected women who did not develop breast cancer. Environmental chemicals were annotated with the Toxin and Toxin-Target Database for chemical signals that were higher in breast cancer cases and used with an exposome epidemiology analytic framework to identify suspect chemicals and associated metabolic networks. Network and pathway enrichment analyses showed consistent linkage in both second and third trimesters to inflammation pathways, including linoleate, arachidonic acid and prostaglandins, and identified new suspect environmental chemicals associated with breast cancer, i.e., an N-substituted piperidine insecticide and a common commercial product, 2,4-dinitrophenol, linked to variations in amino acid and nucleotide pathways in second trimester and benzo[a]carbazole and a benzoate derivative linked to glycan and amino sugar metabolism in third trimester. The results identify new suspect environmental chemical risk factors for breast cancer and provide an exposome epidemiology framework for discovery of suspect environmental chemicals and potential mechanistic associations with breast cancer.


Assuntos
Neoplasias da Mama , Expossoma , Feminino , Humanos , Gravidez , Aminoácidos , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Espectrometria de Massas/métodos
6.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107179

RESUMO

Antagonistic interaction refers to opposing beneficial and adverse signaling by a single agent. Understanding opposing signaling is important because pathologic outcomes can result from adverse causative agents or the failure of beneficial mechanisms. To test for opposing responses at a systems level, we used a transcriptome-metabolome-wide association study (TMWAS) with the rationale that metabolite changes provide a phenotypic readout of gene expression, and gene expression provides a phenotypic readout of signaling metabolites. We incorporated measures of mitochondrial oxidative stress (mtOx) and oxygen consumption rate (mtOCR) with TMWAS of cells with varied manganese (Mn) concentration and found that adverse neuroinflammatory signaling and fatty acid metabolism were connected to mtOx, while beneficial ion transport and neurotransmitter metabolism were connected to mtOCR. Each community contained opposing transcriptome-metabolome interactions, which were linked to biologic functions. The results show that antagonistic interaction is a generalized cell systems response to mitochondrial ROS signaling.

7.
Sci Rep ; 13(1): 1886, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732537

RESUMO

During the first 2 years of life, the infant gut microbiome is rapidly developing, and gut bacteria may impact host health through the production of metabolites that can have systemic effects. Thus, the fecal metabolome represents a functional readout of gut bacteria. Despite the important role that fecal metabolites may play in infant health, the development of the infant fecal metabolome has not yet been thoroughly characterized using frequent, repeated sampling during the first 2 years of life. Here, we described the development of the fecal metabolome in a cohort of 101 Latino infants with data collected at 1-, 6-, 12-, 18-, and 24-months of age. We showed that the fecal metabolome is highly conserved across time and highly personalized, with metabolic profiles being largely driven by intra-individual variability. Finally, we also identified several novel metabolites and metabolic pathways that changed significantly with infant age, such as valerobetaine and amino acid metabolism, among others.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Humanos , Fezes/microbiologia , Bactérias , Manejo de Espécimes , RNA Ribossômico 16S/análise
8.
J Pediatr Gastroenterol Nutr ; 76(3): 355-363, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728821

RESUMO

BACKGROUND/OBJECTIVES: Eosinophilic esophagitis (EoE) is an inflammatory disease of unclear etiology. The aim of this study was to use untargeted plasma metabolomics to identify metabolic pathway alterations associated with EoE to better understand the pathophysiology. METHODS: This prospective, case-control study included 72 children, aged 1-17 years, undergoing clinically indicated upper endoscopy (14 diagnosed with EoE and 58 controls). Fasting plasma samples were analyzed for metabolomics by high-resolution dual-chromatography mass spectrometry. Analysis was performed on sex-matched groups at a 2:1 ratio. Significant differences among the plasma metabolite features between children with and without EoE were determined using multivariate regression analysis and were annotated with a network-based algorithm. Subsequent pathway enrichment analysis was performed. RESULTS: Patients with EoE had a higher proportion of atopic disease (85.7% vs 50%, P = 0.019) and any allergies (100% vs 57.1%, P = 0.0005). Analysis of the dual chromatography features resulted in a total of 918 metabolites that differentiated EoE and controls. Glycerophospholipid metabolism was significantly enriched with the greatest number of differentiating metabolites and overall pathway enrichment ( P < 0.01). Multiple amino and fatty acid pathways including linoleic acid were also enriched, as well as pyridoxine metabolism ( P < 0.01). CONCLUSIONS: In this pilot study, we found differences in metabolites involved in glycerophospholipid and inflammation pathways in pediatric patients with EoE using untargeted metabolomics, as well as overlap with amino acid metabolome alterations found in atopic disease.


Assuntos
Esofagite Eosinofílica , Humanos , Criança , Esofagite Eosinofílica/diagnóstico , Estudos Prospectivos , Estudos de Casos e Controles , Projetos Piloto , Metabolômica
9.
Sci Rep ; 12(1): 18663, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333377

RESUMO

Pediatric liver transplantation rejection affects 20% of children. Currently, liver biopsy, expensive and invasive, is the best method of diagnosis. Discovery and validation of clinical biomarkers from blood or other biospecimens would improve clinical care. For this study, stored plasma samples were utilized from two cross-sectional cohorts of liver transplant patients at Children's Healthcare of Atlanta. High resolution metabolic profiling was completed using established methods. Children with (n = 18) or without (n = 25) acute cellular rejection were included in the analysis (n = 43 total). The mean age of these racially diverse cohorts ranged from 12.6 years in the rejection group and 13.6 years in the no rejection group. Linear regression provided 510 significantly differentiating metabolites between groups, and OPLS-DA showed 145 metabolites with VIP > 2. A total of 95 overlapping significant metabolites between OPLS-DA and linear regression analyses were detected. Pathway analysis (p < 0.05) showed bile acid biosynthesis and tryptophan metabolism as the top two differentiating pathways. Network analysis also identified tryptophan and clustered with liver enzymes and steroid use. We conclude metabolic profiling of plasma from children with acute liver transplant rejection demonstrates > 500 significant metabolites. This result suggests that development of a non-invasive biomarker-based test is possible for rejection screening.


Assuntos
Rejeição de Enxerto , Transplante de Fígado , Humanos , Criança , Rejeição de Enxerto/patologia , Estudos Transversais , Triptofano , Metabolômica/métodos , Fígado/patologia , Biomarcadores , Complicações Pós-Operatórias/patologia
10.
Sci Data ; 9(1): 722, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433985

RESUMO

Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.


Assuntos
Malária , Plasmodium cynomolgi , Animais , Interações Hospedeiro-Patógeno , Macaca mulatta , Plasmodium cynomolgi/fisiologia , Esporozoítos , Biologia de Sistemas , Zoonoses
11.
Metabolites ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295835

RESUMO

Omics analyses are commonly used for identifying pathways and genes responsible for physiologic and pathologic processes. Though sex is considered a biological variable in rigorous assessments of pulmonary responses to oxidant exposures, the contribution of the murine strain is largely ignored. This study utilized an unbiased integrated assessment of high-resolution metabolomic profiling and RNA-sequencing to explore sex- and strain-dependent pathways in adult mouse lungs. The results indicated that strain exhibited a greater influence than sex on pathways associated with inflammatory and oxidant/antioxidant responses and that interaction metabolites more closely resembled those identified as differentially expressed by strain. Metabolite analyses revealed that the components of the glutathione antioxidant pathway were different between strains, specifically in the formation of mixed disulfides. Additionally, selenium metabolites such as selenohomocystiene and selenocystathionine were similarly differentially expressed. Transcriptomic analysis revealed similar findings, as evidenced by differences in glutathione peroxidase, peroxiredoxin, and the inflammatory transcription factors RelA and Jun. In summary, an multi-omics integrated approach identified that murine strain disproportionately impacts baseline expression of antioxidant systems in lung tissues. We speculate that strain-dependent differences contribute to discrepant pulmonary responses in preclincal mouse models, with deleterious effects on clinical translation.

12.
Environ Int ; 169: 107530, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148711

RESUMO

BACKGROUND: Human and animal exposure to bisphenol A (BPA) has been associated with adverse developmental and reproductive effects. The molecular mechanisms by which BPA exposure exerts its effects are not well-understood, even less known about its analogues bisphenol F (BPF). To address these knowledge gaps, we conducted an untargeted metabolome-wide association study (MWAS) to identify metabolic perturbations associated with BPA/BPF exposures in a pregnant African American cohort. METHODS: From a subset of study participants enrolled in the Atlanta African American Maternal-Child cohort, we collected both urine samples, for targeted exposure assessment of BPA (N = 230) and BPF (N = 48), and serum samples, for high-resolution metabolomics (HRM) profiling (N = 230), during early pregnancy (8-14 weeks' gestation). Using an established untargeted HRM workflow consisting of MWAS modeling, pathway enrichment analysis, and chemical annotation and confirmation, we investigated the potential metabolic pathways and features associated with BPA/BPF exposures. RESULTS: The geometric mean creatinine-adjusted concentrations of urinary BPA and BPF were 0.85 ± 2.58 and 0.70 ± 4.71 µg/g creatinine, respectively. After false positive discovery rate correction at 20 % level, 264 and 733 unique metabolic features were significantly associated with urinary BPA and BPF concentrations, representing 10 and 12 metabolic pathways, respectively. Three metabolic pathways, including steroid hormones biosynthesis, lysine and lipoate metabolism, were significantly associated with both BPA and BPF exposure. Using chemical standards, we have confirmed the chemical identity of 16 metabolites significantly associated with BPA or BPF exposure. CONCLUSIONS: Our findings support that exposure to BPA and BPF in pregnant women is associated with the perturbation of aromatic amino acid metabolism, xenobiotics metabolism, steroid biosynthesis, and other amino acid metabolism closely linked to stress responses, inflammation, neural development, reproduction, and weight regulation.


Assuntos
Exposição Materna , Gestantes , Negro ou Afro-Americano , Aminoácidos Aromáticos , Animais , Compostos Benzidrílicos/urina , Creatinina , Feminino , Hormônios , Humanos , Lisina , Exposição Materna/efeitos adversos , Fenóis , Gravidez , Esteroides
13.
Environ Sci Technol ; 56(10): 6525-6536, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476389

RESUMO

In the omics era, saliva, a filtrate of blood, may serve as an alternative, noninvasive biospecimen to blood, although its use for specific metabolomic applications has not been fully evaluated. We demonstrated that the saliva metabolome may provide sensitive measures of traffic-related air pollution (TRAP) and associated biological responses via high-resolution, longitudinal metabolomics profiling. We collected 167 pairs of saliva and plasma samples from a cohort of 53 college student participants and measured corresponding indoor and outdoor concentrations of six air pollutants for the dormitories where the students lived. Grand correlation between common metabolic features in saliva and plasma was moderate to high, indicating a relatively consistent association between saliva and blood metabolites across subjects. Although saliva was less associated with TRAP compared to plasma, 25 biological pathways associated with TRAP were detected via saliva and accounted for 69% of those detected via plasma. Given the slightly higher feature reproducibility found in saliva, these findings provide some indication that the saliva metabolome offers a sensitive and practical alternative to blood for characterizing individual biological responses to environmental exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes , Saliva/química
14.
Sci Rep ; 12(1): 4899, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318361

RESUMO

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Micotoxicose , Ração Animal/análise , Animais , Bovinos , Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidade , Festuca/metabolismo , Lolium/microbiologia
15.
Front Cell Infect Microbiol ; 12: 1058926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710962

RESUMO

Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.


Assuntos
Microbioma Gastrointestinal , Malária Vivax , Malária , Plasmodium cynomolgi , Animais , Humanos , Macaca mulatta/genética , Macaca mulatta/metabolismo , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium cynomolgi/genética , Plasmodium cynomolgi/metabolismo , Bactérias/genética , RNA Ribossômico 16S/genética
16.
Toxicology ; 463: 152987, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648870

RESUMO

1,3-Butadiene (BD) exposure is known to cause numerous adverse health effects, including cancer, in animals and humans. BD is metabolized to reactive epoxide intermediates, which are genotoxic, but it is not well know what other effects BD has on cellular metabolism. We examined the effects of exposure to BD on the mouse lung metabolome in the genetically heterogeneous collaborative cross outbred mouse model. Mice were exposed to 3 concentra-tions of BD for 10 days (2, 20, and 200 ppm), and lung tissues were analyzed using high-resolution mass spectrometry-based metabolomics. As compared to controls (0 ppm BD), BD had extensive effects on lung metabolism at all concentrations of exposure, including the lowest concentration of 2 ppm, as reflected by reprogramming of multiple metabolic pathways. Metabolites participating in glycolysis and the tricarboxylic acid cycle were elevated, with 8 out of 10 metabolites demonstrating a 2 to 8-fold increase, including the oncometabolite fumarate. Fatty acid levels, sphingosine, and sphinganine were decreased (2 to 8-fold), and fatty acyl-CoAs were significantly increased (16 to 31-fold), suggesting adjustments in lipid metabolism. Furthermore, metabolites involved in basic amino acid metabolism, steroid hormone metabolism, and nucleic acid metabolism were significantly altered. Overall, these changes mirror the metabolic alterations found in lung cancer cells, suggesting that very low doses of BD induce metabolic adaptations that may prevent or promote adverse health effects such as tumor formation.


Assuntos
Butadienos/toxicidade , Neoplasias Pulmonares/patologia , Pulmão/patologia , Metabolômica , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Camundongos de Cruzamento Colaborativo , Relação Dose-Resposta a Droga , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas , Metaboloma , Camundongos , Fenótipo
17.
Environ Int ; 157: 106810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365318

RESUMO

BACKGROUND: Chronic exposure to certain metals plays a role in disease development. Integrating untargeted metabolomics with urinary metallome data may contribute to better understanding the pathophysiology of diseases and complex molecular interactions related to environmental metal exposures. To discover novel associations between urinary metal biomarkers and metabolism networks, we conducted an integrative metallome-metabolome analysis using a panel of urinary metals and untargeted blood metabolomic data from the Strong Heart Family Study (SHFS). METHODS: The SHFS is a prospective family-based cohort study comprised of American Indian men and women recruited in 2001-2003. This nested case-control analysis of 145 participants of which 50 developed incident diabetes at follow up in 2006-2009, included participants with urinary metal and untargeted metabolomic data. Concentrations of 8 creatinine-adjusted urine metals/metalloids [antimony (Sb), cadmium (Cd), lead (Pb), molybdenum (Mo), selenium (Se), tungsten (W), uranium (U) and zinc (Zn)], and 4 arsenic species [inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (AsB)] were measured. Global metabolomics was performed on plasma samples using high-resolution Orbitrap mass spectrometry. We performed an integrative network analysis using xMWAS and a metabolic pathway analysis using Mummichog. RESULTS: 8,810 metabolic features and 12 metal species were included in the integrative network analysis. Most metal species were associated with distinct subsets of metabolites, forming single-metal-multiple-metabolite clusters (|r|>0.28, p-value < 0.001). DMA (clustering with W), iAs (clustering with U), together with Mo and Se showed modest interactions through associations with common metabolites. Pathway enrichment analysis of associated metabolites (|r|>0.17, p-value < 0.1) showed effects in amino acid metabolism (AsB, Sb, Se and U), fatty acid and lipid metabolism (iAs, Mo, W, Sb, Pb, Cd and Zn). In stratified analyses among participants who went on to develop diabetes, iAs and U clustered together through shared metabolites, and both were associated with the phosphatidylinositol phosphate metabolism pathway; metals were also associated with metabolites in energy metabolism (iAs, MMA, DMA, U, W) and xenobiotic degradation and metabolism (DMA, Pb) pathways. CONCLUSION: In this integrative analysis of multiple metals and untargeted metabolomics, results show common associations with fatty acid, energy and amino acid metabolism pathways. Results for individual metabolite associations differed for different metals, indicating that larger populations will be needed to confirm the metal-metal interactions detected here, such as the strong interaction of uranium and inorganic arsenic. Understanding the biochemical networks underlying metabolic homeostasis and their association with exposure to multiple metals may help identify novel biomarkers, pathways of disease, potential signatures of environmental metal exposure.


Assuntos
Arsênio , Diabetes Mellitus , Urânio , Estudos de Coortes , Diabetes Mellitus/epidemiologia , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Metaboloma , Estudos Prospectivos
18.
Surgery ; 169(1): 102-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771296

RESUMO

BACKGROUND: The incidence of primary hyperparathyroidism has increased 300% in the United States in the past 30 years, and secondary hyperparathyroidism is almost universal in patients with end-stage renal disease. We assessed the presence of environmental chemicals in human hyperplastic parathyroid tumors as possible contributing factors to this increase. METHODS: Cryopreserved hyperplastic parathyroid tumors and normal human parathyroids were analyzed by gas chromatography and liquid chromatography coupled to ultra-high-resolution mass spectrometry, bioinformatics, and biostatistics. RESULTS: Detected environmental chemicals included polychlorinated biphenyls, polybrominated diphenyl ethers, dichloro-diphenyl-trichloroethane derivatives, and other insecticides. A total of 99% had p,p'-dichlorodiphenyldichloroethylene. More than 50% contained other environmental chemicals, and many classified as endocrine disruptors. Polychlorinated biphenyl-28 and polychlorinated biphenyl-49 levels correlated positively with parathyroid tumor mass. Polybrominated diphenyl ether-47 concentrations in tumors were inversely correlated with patients' serum calcium levels. Cellular metabolites in pathways of purine and pyrimidine synthesis and mitochondrial energy production were associated with tumor growth and with p,p'-dichlorodiphenyldichloroethylene in primary hyperparathyroidism tumors. In normal parathyroids, p,p'-dichlorodiphenyldichloroethylene , polychlorinated biphenyl-28, polychlorinated biphenyl-74, and polychlorinated biphenyl-153, but not p,p'-dichlorodiphenyldichloroethylene or polychlorinated biphenyl-49, were detected. CONCLUSION: Environmental chemicals are present in human parathyroid tumors and warrant detailed epidemiologic and mechanistic studies to test for causal links to the growth of human parathyroid tumors.


Assuntos
Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Hiperparatireoidismo Primário/epidemiologia , Hiperparatireoidismo Secundário/epidemiologia , Glândulas Paratireoides/química , Neoplasias das Paratireoides/epidemiologia , Causalidade , Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/efeitos adversos , Éteres Difenil Halogenados/análise , Humanos , Hiperparatireoidismo Primário/patologia , Hiperparatireoidismo Primário/cirurgia , Hiperparatireoidismo Secundário/etiologia , Hiperparatireoidismo Secundário/patologia , Hiperparatireoidismo Secundário/cirurgia , Incidência , Masculino , Pessoa de Meia-Idade , Glândulas Paratireoides/patologia , Glândulas Paratireoides/cirurgia , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/patologia , Neoplasias das Paratireoides/cirurgia , Paratireoidectomia , Bifenilos Policlorados/efeitos adversos , Bifenilos Policlorados/análise , Estudos Retrospectivos , Estados Unidos/epidemiologia
19.
Parkinsonism Relat Disord ; 82: 98-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271463

RESUMO

INTRODUCTION: Cervical dystonia is the most common of the adult-onset focal dystonias. Most cases are idiopathic. The current view is that cervical dystonia may be caused by some combination of genetic and environmental factors. Genetic contributions have been studied extensively, but there are few studies of other factors. We conducted an exploratory metabolomics analysis of cervical dystonia to identify potentially abnormal metabolites or altered biological pathways. METHODS: Plasma samples from 100 cases with idiopathic cervical dystonia and 100 controls were compared using liquid chromatography coupled with mass spectrometry-based metabolomics. RESULTS: A total of 7346 metabolic features remained after quality control, and up to 289 demonstrated significant differences between cases and controls, depending on statistical criteria chosen. Pathway analysis revealed 9 biological processes to be significantly associated at p < 0.05, 5 pathways were related to carbohydrate metabolism, 3 pathways were related to lipid metabolism. CONCLUSION: This is the first large scale metabolomics study for any type of dystonia. The results may provide potential novel insights into the biology of cervical dystonia.


Assuntos
Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Torcicolo/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Torcicolo/sangue
20.
Sci Transl Med ; 12(571)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239384

RESUMO

Tissue interstitial fluid (ISF) surrounds cells and is an underutilized source of biomarkers that complements conventional sources such as blood and urine. However, ISF has received limited attention due largely to lack of simple collection methods. Here, we developed a minimally invasive, microneedle-based method to sample ISF from human skin that was well tolerated by participants. Using a microneedle patch to create an array of micropores in skin coupled with mild suction, we sampled ISF from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in ISF when compared to companion plasma samples based on mass spectrometry analysis. Many biomarkers used in research and current clinical practice were common to ISF and plasma. Because ISF does not clot, these biomarkers could be continuously monitored in ISF similar to current continuous glucose monitors but without requiring an indwelling subcutaneous sensor. Biomarkers distinct to ISF included molecules associated with systemic and dermatological physiology, as well as exogenous compounds from environmental exposures. We also determined that pharmacokinetics of caffeine in healthy adults and pharmacodynamics of glucose in children and young adults with diabetes were similar in ISF and plasma. Overall, these studies provide a minimally invasive method to sample dermal ISF using microneedles and demonstrate human ISF as a source of biomarkers that may enable research and translation for future clinical applications.


Assuntos
Líquido Extracelular , Pele , Biomarcadores , Criança , Humanos , Hidrogéis , Agulhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...