Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702503

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Assuntos
Quitina , Polissacarídeos , Quitina/metabolismo , Polissacarídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Celulose/metabolismo , Parede Celular/metabolismo
2.
Theor Appl Genet ; 136(3): 33, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897507

RESUMO

KEY MESSAGE: Eleven wheat lines that are missing genes for the 1D-encoded omega-5 gliadins will facilitate breeding efforts to reduce the immunogenic potential of wheat flour for patients susceptible to wheat allergy. Efforts to reduce the levels of allergens in wheat flour that cause wheat-dependent exercise-induced anaphylaxis are complicated by the presence of genes encoding omega-5 gliadins on both chromosomes 1B and 1D of hexaploid wheat. In this study, we screened 665 wheat germplasm samples using gene specific DNA markers for omega-5 gliadins encoded by the genes on 1D chromosome that were obtained from the reference wheat Chinese Spring. Eleven wheat lines missing the PCR product corresponding to 1D omega-5 gliadin gene sequences were identified. Two of the lines contained the 1BL·1RS translocation. Relative quantification of gene copy numbers by qPCR revealed that copy numbers of 1D omega-5 gliadins in the other nine lines were comparable to those in 1D null lines of Chinese Spring, while copy numbers of 1B omega-5 gliadins were like those of Chinese Spring. 2-D immunoblot analysis of total flour proteins from the selected lines using a specific monoclonal antibody against the N-terminal sequence of omega-5 gliadin showed no reactivity in regions of the blots containing previously identified 1D omega-5 gliadins. Interestingly, RP-UPLC analysis of the gliadin fractions of the selected lines indicated that the expression of omega-1,2 gliadins was also significantly reduced in seven of the lines, implying that 1D omega-5 gliadin and 1D omega-1,2 gliadin genes are tightly linked on the Gli-D1 loci of chromosome 1D. Wheat lines missing the omega-5 gliadins encoded by the genes on 1D chromosome should be useful in future breeding efforts to reduce the immunogenic potential of wheat flour.


Assuntos
Farinha , Gliadina , Humanos , Gliadina/genética , Gliadina/metabolismo , Melhoramento Vegetal , Triticum/genética , Cromossomos/química , Cromossomos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36584432

RESUMO

Ingestion of gluten proteins from wheat, and related prolamin proteins from barley, rye, and oats, can cause adverse reactions in individuals with coeliac disease and IgE-mediated allergies. As there is currently no cure for these conditions, patients must practice avoidance of gluten-containing foods. In order to support patients in making safe food choices, foods making a "gluten-free" claim must contain no more than 20 mg/Kg of gluten. Mass spectrometry methods have the potential to provide an alternative method for confirmatory analysis of gluten that is complementary to analysis currently undertaken by immunoassay. As part of the development of such methodology the effectiveness of two different extraction procedures was investigated using wholemeal wheat flour before and after defatting with water-saturated butan-1-ol. A single step extraction with 50 % (v/v) propan-2-ol containing 2 M urea and reducing agent (buffer 1) was compared with a two-step extraction using 60 % (v/v) aqueous ethanol (buffer 2) followed by re-extraction of the pellet using buffer 1, using either wheel mixing under ambient conditions (19 °C) or sonication at 60 °C. The procedures were compared based on total protein extraction efficiency and the composition of the extracts determined using a combination of HPLC, SDS-PAGE and immunoblotting with a panel of four gluten-specific monoclonal antibodies. Defatting generally had a detrimental effect on extraction efficiency and sonication at 60 °C only improved extraction efficiency with buffer 2. Although the single-step and two-step procedures were equally effective at extracting protein from the samples, analysis of extracts showed that the two-step method gave a more complete extraction of gluten proteins. Future studies will compare the effectiveness of these procedures when applied in the sample workflows for mass spectrometry based methods for determination of gluten in food.


Assuntos
Farinha , Glutens , Farinha/análise , Glutens/análise , Triticum/química , Fluxo de Trabalho , Cromatografia
4.
Appl Environ Microbiol ; 88(23): e0158122, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36354345

RESUMO

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes. Here, and after reannotation of this data set and detailed phylogenetic analyses, we observed that several CAZymes (including glycoside hydrolases and carbohydrate oxidases) are predicted to act on the fungal cell wall (FCW), notably on ß-1,3-glucans. We heterologously produced and biochemically characterized two new CAZymes, called UmGH16_1-A and UmAA3_2-A. We show that UmGH16_1-A displays ß-1,3-glucanase activity, with a preference for ß-1,3-glucans with short ß-1,6 substitutions, and UmAA3_2-A is a dehydrogenase catalyzing the oxidation of ß-1,3- and ß-1,6-gluco-oligosaccharides into the corresponding aldonic acids. Working on model ß-1,3-glucans, we show that the linear oligosaccharide products released by UmGH16_1-A are further oxidized by UmAA3_2-A, bringing to light a putative biocatalytic cascade. Interestingly, analysis of available transcriptomics data indicates that both UmGH16_1-A and UmAA3_2-A are coexpressed, only during early stages of U. maydis infection cycle. Altogether, our results suggest that both enzymes are connected and that additional accessory activities still need to be uncovered to fully understand the biocatalytic cascade at play and its physiological role. IMPORTANCE Filamentous fungi play a central regulatory role on Earth, notably in the global carbon cycle. Regardless of their lifestyle, filamentous fungi need to remodel their own cell wall (mostly composed of polysaccharides) to grow and proliferate. To do so, they must secrete a large arsenal of enzymes, most notably carbohydrate-active enzymes (CAZymes). However, research on fungal CAZymes over past decades has mainly focused on finding efficient plant biomass conversion processes while CAZymes directed at the fungus itself have remained little explored. In the present study, using the maize pathogen Ustilago maydis as model, we set off to evaluate the prevalence of CAZymes directed toward the fungal cell wall during growth of the fungus on plant biomass and characterized two new CAZymes active on fungal cell wall components. Our results suggest the existence of a biocatalytic cascade that remains to be fully understood.


Assuntos
Glicosídeo Hidrolases , Ustilago , Glicosídeo Hidrolases/metabolismo , Zea mays/metabolismo , Oxirredutases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Parede Celular/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Carboidratos , Glucanos/metabolismo
5.
Sci Rep ; 12(1): 12253, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851276

RESUMO

Lipid transfer proteins (LTPs) were identified as allergens in a large variety of pollens and foods, including cereals. LTPs belong to the prolamin superfamily and display an α-helical fold, with a bundle of four α-helices held together by four disulfide bonds. Wheat LTP1 is involved in allergic reactions to food. To identify critical structural elements of antibody binding to wheat LTP1, we used site-directed mutagenesis on wheat recombinant LTP1 to target: (i) sequence conservation and/or structure flexibility or (ii) each disulfide bond. We evaluated the modifications induced by these mutations on LTP1 secondary structure by synchrotron radiation circular dichroism and on its antigenicity with patient's sera and with mouse monoclonal antibodies. Disruption of the C28-C73 disulfide bond significantly affected IgE-binding and caused protein denaturation, while removing C13-C27 bond decreased LTP1 antigenicity and slightly modified LTP1 overall folding. In addition, we showed Lys72 to be a key residue; the K72A mutation did not affect global folding but modified the local 3D structure of LTP1 and strongly reduced IgE-binding. This work revealed a cluster of residues (C13, C27, C28, C73 and K72), four of which embedded in disulfide bonds, which play a critical role in LTP1 antigenicity.


Assuntos
Alérgenos , Triticum , Animais , Dissulfetos/química , Imunoglobulina E , Camundongos , Mutagênese Sítio-Dirigida , Proteínas de Plantas/metabolismo , Triticum/metabolismo
6.
Anal Bioanal Chem ; 414(8): 2553-2570, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201367

RESUMO

The design and production of incurred test materials are critical for the development and validation of methods for food allergen analysis. This is because production and processing conditions, together with the food matrix, can modify allergens affecting their structure, extractability and detectability. For the ThRAll project, which aims to develop a mass spectrometry-based reference method for the simultaneous accurate quantification of six allergenic ingredients in two hard to analyse matrices. Two highly processed matrices, chocolate bars and broth powder, were selected to incur with six allergenic ingredients (egg, milk, peanut, soy, hazelnut and almond) at 2, 4, 10 and 40 mg total allergenic protein/kg food matrix using a pilot-scale food manufacturing plant. The allergenic activity of the ingredients incurred was verified using food-allergic patient serum/plasma IgE, the homogeneity of the incurred matrices verified and their stability at 4 °C assessed over at least 30-month storage using appropriate enzyme-linked immunosorbent assays (ELISA). Allergens were found at all levels from the chocolate bar and were homogenously distributed, apart from peanut and soy which could only be determined above 4 mg total allergenic ingredient protein/kg. The homogeneity assessment was restricted to analysis of soy, milk and peanut for the broth powder but nevertheless demonstrated that the allergens were homogeneously distributed. All the allergens tested were found to be stable in the incurred matrices for at least 30 months demonstrating they are suitable for method development.


Assuntos
Chocolate , Hipersensibilidade Alimentar , Alérgenos/análise , Arachis/química , Chocolate/análise , Ensaio de Imunoadsorção Enzimática , Análise de Alimentos/métodos , Humanos , Pós
7.
Allergy ; 77(3): 933-945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34324715

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are known to protect against allergies. Moreover, the decrease in the frequency and efficiency of Tregs amplifies allergic symptoms. AIM: This study investigated whether expanding Tregs in vivo with an IL-2/IL-2 antibody complex could be safe, well tolerated and efficient in a therapeutic setting in allergies. METHODS: We produced an anti-IL-2 antibody (1C6) and demonstrated that when it is complexed to human IL-2, it increases IL-2 efficiency to induce Tregs in vivo without any detectable side effects. Furthermore, the IL-2/1C6 complex induces an increase in Helios expression by Tregs, suggesting that it not only elevated Treg numbers but also boosted their functions. Using mouse models of house-dust-mite-induced airway inflammation and wheat-gliadin-induced food allergies, we investigated the therapeutic potential of the IL-2/1C6 complex in allergies. RESULTS: IL-2/1C6 treatment significantly reduced allergic symptoms, specific IgE production, the adaptive immune response and tissue damage. Interestingly, IL-2/1C6 treatment modulated innate lymphoid cells by increasing ILC2s in asthma and decreasing ILC3s in food allergies. CONCLUSION: In conclusion,complexed IL-2/anti-IL-2 may restore Treg numbers and function in respiratory and food allergies, thereby improving allergic markers and symptoms. Our IL-2/anti-IL-2 complex offers new hope for reestablishing immune tolerance in patients with allergies.


Assuntos
Asma , Hipersensibilidade Alimentar , Animais , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interleucina-2 , Linfócitos , Camundongos , Linfócitos T Reguladores
8.
Probiotics Antimicrob Proteins ; 14(5): 779-791, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081268

RESUMO

Wheat is a worldwide staple food, yet some people suffer from strong immunological reactions after ingesting wheat-based products. Lactic acid bacteria (LAB) constitute a promising approach to reduce wheat allergenicity because of their proteolytic system. In this study, 172 LAB strains were screened for their proteolytic activity on gluten proteins and α-amylase inhibitors (ATIs) by SDS-PAGE and RP-HPLC. Gliadins, glutenins, and ATI antigenicity and allergenicity were assessed by Western blot/Dot blot and by degranulation assay using RBL-SX38 cells. The screening resulted in selecting 9 high gluten proteolytic strains belonging to two species: Enterococcus faecalis and Lactococcus lactis. Proteomic analysis showed that one of selected strains, Lc. lactis LLGKC18, caused degradation of the main gluten allergenic proteins. A significant decrease of the gliadins, glutenins, and ATI antigenicity was observed after fermentation of gluten by Lc. lactis LLGKC18, regardless the antibody used in the tests. Also, the allergenicity as measured by the RBL-SX38 cell degranulation test was significantly reduced. These results indicate that Lc. lactis LLGKC18 gluten fermentation can be deeply explored for its capability to hydrolyze the epitopes responsible for wheat allergy.


Assuntos
Lactobacillales , Lactococcus lactis , Alérgenos/metabolismo , Fermentação , Gliadina/metabolismo , Glutens/metabolismo , Humanos , Imunoglobulina E/metabolismo , Lactobacillales/metabolismo , Lactococcus lactis/metabolismo , Proteômica
9.
Food Chem ; 343: 128533, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183874

RESUMO

Peptide marker identification is an important step in development of a mass spectrometry method for multiple allergen detection, since specificity, robustness and sensitivity of the overall analytical method will depend on the reliability of the proteotypic peptides. As part of the development of a multi-analyte reference method, discovery analysis of two incurred food matrices has been undertaken to select the most reliable peptide markers. Six allergenic ingredients (milk, egg, peanut, soybean, hazelnut, and almond) were incurred into either chocolate or broth powder matrix. Different conditions of protein extraction and purification were tested and the tryptic peptide pools were analysed by untargeted high resolution tandem mass spectrometry and the resulting fragmentation spectra were processed via a commercial software for sequence identification. The analysis performed on incurred foods provides both a prototype effective and straightforward sample preparation protocol and delivers reliable peptides to be included in a standardized selected reaction monitoring method.


Assuntos
Alérgenos/química , Chocolate/análise , Análise de Alimentos/métodos , Espectrometria de Massas em Tandem , Animais , Pós , Reprodutibilidade dos Testes
10.
Front Nutr ; 7: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258047

RESUMO

Celiac disease (CD) affects a growing number of individuals worldwide. To elucidate the causes for this increase, future multidisciplinary collaboration is key to understanding the interactions between immunoreactive components in gluten-containing cereals and the human gastrointestinal tract and immune system and to devise strategies for CD prevention and treatment beyond the gluten-free diet. During the last meetings, the Working Group on Prolamin Analysis and Toxicity (Prolamin Working Group, PWG) discussed recent progress in the field together with key stakeholders from celiac disease societies, academia, industry and regulatory bodies. Based on the current state of knowledge, this perspective from the PWG members provides recommendations regarding clinical, analytical and legal aspects of CD. The selected key topics that require future multidisciplinary collaborative efforts in the clinical field are to collect robust data on the increasing prevalence of CD, to evaluate what is special about gluten-specific T cells, to study their kinetics and transcriptomics and to put some attention to the identification of the environmental agents that facilitate the breaking of tolerance to gluten. In the field of gluten analysis, the key topics are the precise assessment of gluten immunoreactive components in wheat, rye and barley to understand how these are affected by genetic and environmental factors, the comparison of different methods for compliance monitoring of gluten-free products and the development of improved reference materials for gluten analysis.

11.
Food Res Int ; 128: 108747, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955787

RESUMO

Peptide marker identification is one of the most important steps in the development of a mass spectrometry (MS) based method for allergen detection, since the robustness and sensitivity of the overall analytical method will strictly depend on the reliability of the proteotypic peptides tracing for each allergen. The European legislation in place issues the mandatory labelling of fourteen allergenic ingredients whenever used in different food formulations. Among these, six allergenic ingredients, namely milk, egg, peanut, soybean, hazelnut and almond, can be prioritized in light of their higher occurrence in food recalls for undeclared presence with serious risk decision. In this work, we described the results of a comprehensive evaluation of the current literature on MS-based allergen detection aiming at collecting all available information about proteins and peptide markers validated in independent studies for the six allergenic ingredients of interest. The main features of the targeted proteins were commented reviewing all details available about known isoforms and sequence homology particularly in plant-derived allergens. Several critical aspects affecting peptide markers reliability were discussed and according to this evaluation a final short-list of candidate markers was compiled likely to be standardized and implemented in MS methods for allergen analysis.


Assuntos
Alérgenos/análise , Alérgenos/imunologia , Análise de Alimentos/métodos , Hipersensibilidade Alimentar/imunologia , Espectrometria de Massas/métodos , Peptídeos/análise , Biomarcadores/análise , Peptídeos/imunologia , Reprodutibilidade dos Testes
13.
Crit Rev Food Sci Nutr ; 60(1): 147-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30463417

RESUMO

Wheat gluten can be chemically or enzymatically hydrolysed to produce functional ingredients useful in food and cosmetics. However severe allergies to hydrolysed wheat proteins (HWP) have been described in Europe and Japan since the early 2000's. Triggering proteins and IgE epitopes were described both for French and Japanese cohorts and appeared remarkably similar leading to define a new wheat allergic entity. Deamidation induced by functionalisation generate neo-allergens responsible for this particular allergy. This article aims to review the processes leading to deamidation and the clinical features of the patients suffering from this allergy. Then the molecular determinants involved in HWP-allergy were exhaustively described and hypothesis regarding the sensitizing mechanism of HWP-allergy are discussed. Finally, current regulation and tools aiming at managing this risk associated with HWP are presented.


Assuntos
Alérgenos , Glutens/efeitos adversos , Proteínas de Vegetais Comestíveis/efeitos adversos , Hidrolisados de Proteína/efeitos adversos , Hipersensibilidade a Trigo , Humanos , Imunoglobulina E , Estrutura Molecular , Triticum/química
14.
J Agric Food Chem ; 68(5): 1447-1456, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31815474

RESUMO

Gliadins are major wheat allergens. Their treatment by acid or enzymatic hydrolysis has been shown to modify their allergenic potential. As the interaction of food proteins with dendritic cells (DCs) is a key event in allergic sensitization, we wished to investigate whether deamidation and enzymatic hydrolysis influence gliadin processing by DC and to examine the capacity of gliadins to activate DCs. We compared the uptake and degradation of native and modified gliadins by DCs using mouse bone marrow-derived DCs. We also analyzed the effects of these interactions on the phenotypes of DCs and T helper (Th) lymphocytes. Modifying gliadins induced a change in physicochemical properties (molecular weight, hydrophobicity, and sequence) and also in the peptide size. These alterations in turn led to increased uptake and intracellular degradation of the proteins by DCs. Native gliadins (NGs) (100 µg/mL), but not modified gliadins, increased the frequency of DC expressing CD80 (15.41 ± 2.36% vs 6.81 ± 1.10%, p < 0.001), CCR7 (28.53 ± 8.17% vs 17.88 ± 2.53%, p < 0.001), CXCR4 (70.14 ± 4.63% vs 42.82 ± 1.96%, p < 0.001), and CCR7-dependent migration (2.46 ± 1.45 vs 1.00 ± 0.22, p < 0.01) compared with NGs. This was accompanied by Th lymphocyte activation (30.37 ± 3.87% vs 21.53 ± 3.14%, p < 0.1) and proliferation (16.39 ± 3.97% vs 9.31 ± 2.80%, p > 0.1). Moreover, hydrolysis decreases the peptide size and induces an increase in gliadin uptake and degradation. Deamidation and extensive enzymatic hydrolysis of gliadins modify their interaction with DCs, leading to alteration of their immunostimulatory capacity. These findings demonstrate the strong relationship between the biochemical characteristics of proteins and immune cell interactions.


Assuntos
Células Dendríticas/imunologia , Gliadina/química , Gliadina/imunologia , Animais , Biocatálise , Células Cultivadas , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C3H , Linfócitos T Auxiliares-Indutores/imunologia , Triticum/química , Triticum/imunologia , Hipersensibilidade a Trigo/imunologia
15.
J AOAC Int ; 102(5): 1346-1353, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30940282

RESUMO

Risk-based approaches to managing allergens in foods are being developed by the food industry and regulatory authorities to support food-allergic consumers to avoid ingestion of their problem food, especially in relation to the traces of unintended allergens. The application of such approaches requires access to good quality data from clinical studies to support identification of levels of allergens in foods that are generally safe for most food-allergic consumers as well as analytical tools that are able to quantify allergenic food protein. The ThRAll project aims to support the application of risk-based approaches to food-allergen management in two ways. First, a harmonized quantitative MS-based prototype reference method will be developed for the detection of multiple food allergens in standardized incurred food matrices. This will be undertaken for cow's milk, hen's egg, peanut, soybean, hazelnut, and almond incurred into two highly processed food matrices, chocolate and broth powder. This activity is complemented by a second objective to support the development and curation of data on oral food challenges, which are used to define thresholds and minimum eliciting doses. This will be achieved through the development of common protocols for collection and curation of data that will be applied to allergenic foods for which there are currently data gaps.


Assuntos
Alérgenos/análise , Contaminação de Alimentos/análise , Hipersensibilidade Alimentar/imunologia , Alérgenos/imunologia , Animais , Chocolate/análise , Relação Dose-Resposta Imunológica , Fast Foods/análise , Humanos , Espectrometria de Massas , Leite/química , Leite/imunologia , Nozes/química , Nozes/imunologia , Plantas/química , Plantas/imunologia
16.
Pediatr Allergy Immunol ; 30(2): 225-233, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30475427

RESUMO

BACKGROUND: Hen's egg food allergy is frequent in childhood and phenotypically heterogeneous. Some children can tolerate extensively heated egg. We investigated whether individual relative responses could differentiate children who tolerate baked egg. METHODS: Reactivities to raw, pasteurized or hard-boiled egg (E), egg white (EW), and egg yolk (EY) fractions were tested by skin prick test (SPT) in 54 egg-allergic children. IgE-sensitization to EW and EY was determined by ImmunoCAP and IgE-binding to EW and 8 EW proteins and to EY and 4 EY sub-fractions by ELISA. Population heterogeneity was assessed by hierarchical ascending classification upon individual variations of reactivity and links between classifications and clinical features by analyzing the contingency tables. RESULTS: All children had positive SPT to raw E and raw EW and 72% to raw EY. Heating decreased SPT-reactivity for some children, pasteurization being less effective than hard-boiling. Children were classed into three classes from relative SPT-reactivity to raw fractions, two from variations of SPT-reactivity with each thermal processing or EW/EY ratio of sensitization, and four from their sensitization pattern. Classifications according to heating were found independent of each other. SPT variations with hard-boiling, IgE-sensitization (ratio or pattern) were linked to allowance by the physicians of egg in baked products. CONCLUSIONS: Egg-allergic children were often both sensitized to EY and EW, and heterogeneous patterns of relative responses were evidenced. Irrespective of age and level of sensitization, a low EW/EY ratio or SPT getting null with hard-boiling was found in children allowed to eat baked egg.


Assuntos
Hipersensibilidade a Ovo/imunologia , Ovos/efeitos adversos , Tolerância Imunológica/imunologia , Administração Oral , Biomarcadores/sangue , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , França , Calefação , Humanos , Imunoglobulina E/sangue , Lactente , Masculino , Pasteurização , Testes Cutâneos/métodos
17.
PLoS One ; 12(11): e0187415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117222

RESUMO

BACKGROUND: Acid-hydrolyzed wheat proteins (acid-HWPs) have been shown to provoke severe allergic reactions in Europe and Japan that are distinct from classical wheat allergies. Acid-HWPs were shown to contain neo-epitopes induced by the deamidation of gluten proteins. However, products with variable rates of deamidation can be found. OBJECTIVES: In this work, we studied the effect of the extent of wheat proteins deamidation on its allergenicity. A recombinant chimeric IgE was produced and compared to patients' IgE for its capacity to assess the IgE-mediated triggering potential of acid-HWPs. METHODS: Sera from acid-HWP allergic patients were analyzed via ELISA and a functional basophil assay for their IgE reactivity to wheat proteins with different deamidation levels. A chimeric mouse/human IgE (chIgE-DG1) specific for the main neo-epitope, QPEEPFPE, involved in allergy to acid-HWPs was characterized with respect to its functionality and its reactivity compared to that of patients' IgE. RESULTS: Acid-HWPs with medium (30%) and high (50-60%) deamidation levels displayed a markedly stronger IgE binding and capacity to activate basophils than those of samples with weak (15%) deamidation levels. The monoclonal chIgE-DG1 allowed basophil degranulation in the presence of deamidated wheat proteins. ChIgE-DG1 was found to mimic patients' IgE reactivity and displayed the same ability to rank acid-HWP products in a degranulation assay. CONCLUSION: Increasing the deamidation level of products from 15% to 60% resulted in an approximately 2-fold increase in their antigenicity and a 100-fold increase in their eliciting potential. The chimeric ChIgE-DG1 may be a useful tool to evaluate functionalized glutens for their allergenic potential. By mimicking patient sera reactivity, chIgE-DG1 also provided data on the patients' IgE repertoire and on the functionality of certain repeated epitopes in gluten proteins.


Assuntos
Alérgenos/imunologia , Glutens/imunologia , Imunoglobulina E/imunologia , Hidrolisados de Proteína/imunologia , Hipersensibilidade a Trigo/imunologia , Animais , Degranulação Celular , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Peptídeos/metabolismo , Ratos
18.
Sci Rep ; 7(1): 9326, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839196

RESUMO

Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody production is based on using single antigens, however, there are significant gaps in the current repertoire of mAbs against some glycan targets with low immunogenicity. We approached mAb production in a different way and immunised with a complex mixture of polysaccharides. The multiplexed screening capability of carbohydrate microarrays was then exploited to deconvolute the specificities of individual mAbs. Using this strategy, we generated a set of novel mAbs, including one against starch (INCh1) and one against ulvan (INCh2). These polysaccharides are important storage and structural polymers respectively, but both are generally considered as having limited immunogenicity. INCh1 and INCh2 therefore represent important new molecular probes for Viridiplantae research. Moreover, since the α-(1-4)-glucan epitope recognised by INCh1 is also a component of glycogen, this mAb can also be used in mammalian systems. We describe the detailed characterisation of INCh1 and INCh2, and discuss the potential of a non-directed mass-screening approach for mAb production against some glycan targets.


Assuntos
Anticorpos Monoclonais/imunologia , Polissacarídeos/imunologia , Amido/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Epitopos/imunologia , Glicogênio/imunologia , Mamíferos , Plantas
19.
J Agric Food Chem ; 65(18): 3693-3701, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28434227

RESUMO

Heated foods are recommended for avoiding sensitization to food proteins, but depending on the physicochemical conditions during heating, more or less unfolded proteins aggregate differently. Whether the aggregation process could modulate allergenicity was investigated. Heating ovalbumin in opposite electrostatic conditions led to small (A-s, about 50 nm) and large (A-L, about 65 µm) aggregates that were used to sensitize mice. The symptoms upon oral challenge and rat basophil leukemia degranulation with native ovalbumin differed on the basis of which aggregates were used during the sensitization. Immunoglobulin-E (IgE) production was significantly lower with A-s than with A-L. Although two common linear IgE-epitopes were found, the aggregates bound and cross-linked IgE similarly or differently, depending on the sensitizing aggregate. The ovalbumin aggregates thus displayed a lower allergenic potential when formed under repulsive rather than nonrepulsive electrostatic conditions. This further demonstrates that food structure modulates the immune response during the sensitization phase with some effects on the elicitation phase of an allergic reaction and argues for the need to characterize the aggregation state of allergens.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Hipersensibilidade a Ovo/imunologia , Ovalbumina/química , Ovalbumina/imunologia , Animais , Basófilos/imunologia , Feminino , Temperatura Alta , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Agregados Proteicos , Ratos , Eletricidade Estática
20.
Plant Cell Physiol ; 56(11): 2181-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384432

RESUMO

Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.


Assuntos
Parede Celular/química , Galactanos/imunologia , Pectinas/química , Animais , Daucus carota/química , Epitopos , Galactanos/análise , Camundongos , Raízes de Plantas/química , Raízes de Plantas/citologia , Polissacarídeos/análise , Solanum tuberosum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...