Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895059

RESUMO

Cardiovascular diseases are the leading cause of death globally. Within cardiovascular aging, arterial aging holds significant importance, as it involves structural and functional alterations in arteries that contribute substantially to the overall decline in cardiovascular health during the aging process. As arteries age, their ability to respond to stress and injury diminishes, while their luminal diameter increases. Moreover, they experience intimal and medial thickening, endothelial dysfunction, loss of vascular smooth muscle cells, cellular senescence, extracellular matrix remodeling, and deposition of collagen and calcium. This aging process also leads to overall arterial stiffening and cellular remodeling. The process of genomic instability plays a vital role in accelerating vascular aging. Progeria syndromes, rare genetic disorders causing premature aging, exemplify the impact of genomic instability. Throughout life, our DNA faces constant challenges from environmental radiation, chemicals, and endogenous metabolic products, leading to DNA damage and genome instability as we age. The accumulation of unrepaired damages over time manifests as an aging phenotype. To study vascular aging, various models are available, ranging from in vivo mouse studies to cell culture options, and there are also microfluidic in vitro model systems known as vessels-on-a-chip. Together, these models offer valuable insights into the aging process of blood vessels.


Assuntos
Senilidade Prematura , Envelhecimento , Camundongos , Animais , Envelhecimento/genética , Senescência Celular/genética , Artérias , Instabilidade Genômica
2.
Genome Biol ; 23(1): 96, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421995

RESUMO

Genome-wide association studies have identified 3p21.31 as the main risk locus for severe COVID-19, although underlying mechanisms remain elusive. We perform an epigenomic dissection of 3p21.31, identifying a CTCF-dependent tissue-specific 3D regulatory chromatin hub that controls the activity of several chemokine receptor genes. Risk SNPs colocalize with regulatory elements and are linked to increased expression of CCR1, CCR2 and CCR5 in monocytes and macrophages. As excessive organ infiltration of inflammatory monocytes and macrophages is a hallmark of severe COVID-19, our findings provide a rationale for the genetic association of 3p21.31 variants with elevated risk of hospitalization upon SARS-CoV-2 infection.


Assuntos
COVID-19 , Monócitos , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...