Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(1): e1011086, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36622854

RESUMO

Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.


Assuntos
Nanovirus , Vicia faba , Nanovirus/genética , Proteínas do Capsídeo/genética , Vicia faba/genética , DNA Viral/genética , Vírion/genética , Genoma Viral , Mutagênese
2.
Nat Commun ; 14(1): 484, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717560

RESUMO

Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σB factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σB is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation.


Assuntos
RNA Polimerases Dirigidas por DNA , Mycobacterium tuberculosis , Fator sigma , Humanos , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , Holoenzimas/metabolismo , Mycobacterium tuberculosis/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Sci Adv ; 8(35): eabo7761, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054364

RESUMO

Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with ß-arrestin1. It reveals an atypical position of ß-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/ß-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the ß-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.

4.
FEBS J ; 289(16): 4869-4887, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35152545

RESUMO

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells. The UMP kinase from M. tuberculosis is also a model of particular interest for allosteric regulation with two effectors, GTP (positive) and UTP (negative). In this study, using X-ray crystallography and cryo-electron microscopy, we report for the first time a detailed description of the negative effector UTP-binding site of a typical Gram-positive behaving UMP kinase. Comparison between this snapshot of low affinity for Mg-ATP with our previous 3D-structure of the GTP-bound complex of high affinity for Mg-ATP led to a better understanding of the cooperative mechanism and the allosteric regulation of UMP kinase. Thermal shift assay and circular dichroism experiments corroborate our model of an inhibition by UTP linked to higher flexibility of the Mg-ATP-binding domain. These new structural insights provide valuable knowledge for future drug discovery strategies targeting bacterial UMP kinases.


Assuntos
Antibacterianos , Bactérias Gram-Positivas , Trifosfato de Adenosina , Regulação Alostérica , Sequência de Aminoácidos , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Guanosina Trifosfato/farmacologia , Humanos , Núcleosídeo-Fosfato Quinase , Uridina Monofosfato/farmacologia , Uridina Trifosfato/farmacologia
5.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020960

RESUMO

The antidiuretic hormone arginine-vasopressin (AVP) forms a signaling complex with the V2 receptor (V2R) and the Gs protein, promoting kidney water reabsorption. Molecular mechanisms underlying activation of this critical G protein-coupled receptor (GPCR) signaling system are still unknown. To fill this gap of knowledge, we report here the cryo-electron microscopy structure of the AVP-V2R-Gs complex. Single-particle analysis revealed the presence of three different states. The two best maps were combined with computational and nuclear magnetic resonance spectroscopy constraints to reconstruct two structures of the ternary complex. These structures differ in AVP and Gs binding modes. They reveal an original receptor-Gs interface in which the Gαs subunit penetrates deep into the active V2R. The structures help to explain how V2R R137H or R137L/C variants can lead to two severe genetic diseases. Our study provides important structural insights into the function of this clinically relevant GPCR signaling complex.

7.
Nat Commun ; 10(1): 5300, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757955

RESUMO

In Myxococcus xanthus, directed movement is controlled by pole-to-pole oscillations of the small GTPase MglA and its GAP MglB. Direction reversals require that MglA is inactivated by MglB, yet paradoxically MglA and MglB are located at opposite poles at reversal initiation. Here we report the complete MglA/MglB structural cycle combined to GAP kinetics and in vivo motility assays, which uncovers that MglA is a three-state GTPase and suggests a molecular mechanism for concerted MglA/MglB relocalizations. We show that MglA has an atypical GTP-bound state (MglA-GTP*) that is refractory to MglB and is re-sensitized by a feedback mechanism operated by MglA-GDP. By identifying and mutating the pole-binding region of MglB, we then provide evidence that the MglA-GTP* state exists in vivo. These data support a model in which MglA-GDP acts as a soluble messenger to convert polar MglA-GTP* into a diffusible MglA-GTP species that re-localizes to the opposite pole during reversals.


Assuntos
Proteínas de Bactérias/metabolismo , Movimento/fisiologia , Myxococcus xanthus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Escherichia coli , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/ultraestrutura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Myxococcus xanthus/metabolismo
8.
J Mol Biol ; 431(17): 3124-3138, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233764

RESUMO

Rotaviruses, like other non-enveloped, double-strand RNA viruses, package an RNA-dependent RNA polymerase (RdRp) with each duplex of their segmented genomes. Rotavirus cell entry results in loss of an outer protein layer and delivery into the cytosol of an intact, inner capsid particle (the "double-layer particle," or DLP). The RdRp, designated VP1, is active inside the DLP; each VP1 achieves many rounds of mRNA transcription from its associated genome segment. Previous work has shown that one VP1 molecule lies close to each 5-fold axis of the icosahedrally symmetric DLP, just beneath the inner surface of its protein shell, embedded in tightly packed RNA. We have determined a high-resolution structure for the rotavirus VP1 RdRp in situ, by local reconstruction of density around individual 5-fold positions. We have analyzed intact virions ("triple-layer particles"), non-transcribing DLPs and transcribing DLPs. Outer layer dissociation enables the DLP to synthesize RNA, in vitro as well as in vivo, but appears not to induce any detectable structural change in the RdRp. Addition of NTPs, Mg2+, and S-adenosylmethionine, which allows active transcription, results in conformational rearrangements, in both VP1 and the DLP capsid shell protein, that allow a transcript to exit the polymerase and the particle. The position of VP1 (among the five symmetrically related alternatives) at one vertex does not correlate with its position at other vertices. This stochastic distribution of site occupancies limits long-range order in the 11-segment, double-strand RNA genome.


Assuntos
RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Rotavirus/metabolismo , Sítios de Ligação , Proteínas do Capsídeo/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA de Cadeia Dupla , Rotavirus/genética , Transcrição Gênica , Proteínas do Core Viral , Replicação Viral
9.
Virology ; 530: 75-84, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782565

RESUMO

The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles. We present here the cryo-electron microscopy reconstruction of the BBSV and an atomic model of the capsid proteins refined at 3.22 Šresolution. We identified residues involved in RNA/capsid interactions revealing a unique RNA genome organization. Inspection of the small coat protein C-terminal domain highlights a maturation cleavage between Leu567 and Leu568 and interactions of the C-terminal stretch with neighbouring small coat proteins within the capsid pentameric turrets. These interactions previously proposed to play a key role in the assembly of the Cowpea mosaic virus suggest a common capsid assembly mechanism throughout all comovirus species.


Assuntos
Capsídeo/metabolismo , Capsídeo/ultraestrutura , Comovirus/fisiologia , Comovirus/ultraestrutura , Microscopia Crioeletrônica , Montagem de Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Modelos Moleculares , Ligação Proteica , RNA Viral/metabolismo
10.
Sensors (Basel) ; 19(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764519

RESUMO

Industrial plants are going to face a deep renewing process within the Industry 4.0 scenario. New paradigms of production lines are foreseen in the very near future, characterized by a strict collaboration between humans and robots and by a high degree of flexibility. Such envisaged improvements will require the smart use of proper sensors at very different levels. This paper investigates three different aspects of this industrial renewing process, based on three different ways of exploiting sensors, toward a new paradigm of a production line. The provided contributions, offering various types of innovation and integration, are relative to: (i) a virtual sensor approach for manual guidance, increasing the potentialities of a standard industrial manipulator, (ii) a smart manufacturing solution to assist the operator's activity in manual assembly stations, through an original exploitation of multiple sensors, and (iii) the development of an advanced robotic architecture for a flexible production line, in which a team of autonomous mobile robots acts as a meta-sensor net supporting traditional automated guided vehicles. Accurate analyses of existing state-of-the-art solutions compared with the proposed ones are offered for the considered issues.

11.
Sensors (Basel) ; 17(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524072

RESUMO

Collision detection is a fundamental issue for the safety of a robotic cell. While several common methods require specific sensors or the knowledge of the robot dynamic model, the proposed solution is constituted by a virtual collision sensor for industrial manipulators, which requires as inputs only the motor currents measured by the standard sensors that equip a manipulator and the estimated currents provided by an internal dynamic model of the robot (i.e., the one used inside its controller), whose structure, parameters and accuracy are not known. The collision detection is achieved by comparing the absolute value of the current residue with a time-varying, positive-valued threshold function, including an estimate of the model error and a bias term, corresponding to the minimum collision torque to be detected. The value of such a term, defining the sensor sensitivity, can be simply imposed as constant, or automatically customized for a specific robotic application through a learning phase and a subsequent adaptation process, to achieve a more robust and faster collision detection, as well as the avoidance of any false collision warnings, even in case of slow variations of the robot behavior. Experimental results are provided to confirm the validity of the proposed solution, which is already adopted in some industrial scenarios.

13.
J Struct Biol ; 182(1): 1-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376736

RESUMO

Arabis mosaic virus (ArMV) and Grapevine fanleaf virus (GFLV) are two picorna-like viruses from the genus Nepovirus, consisting in a bipartite RNA genome encapsidated into a 30 nm icosahedral viral particle formed by 60 copies of a single capsid protein (CP). They are responsible for a severe degeneration of grapevines that occurs in most vineyards worldwide. Although sharing a high level of sequence identity between their CP, ArMV is transmitted exclusively by the ectoparasitic nematode Xiphinema diversicaudatum whereas GFLV is specifically transmitted by the nematode X. index. The structural determinants involved in the transmission specificity of both viruses map solely to their respective CP. Recently, reverse genetic and crystallographic studies on GFLV revealed that a positively charged pocket in the CP B domain located at the virus surface may be responsible for vector specificity. To go further into delineating the coat protein determinants involved in transmission specificity, we determined the 6.5 Å resolution cryo-electron microscopy structure of ArMV and used homology modeling and flexible fitting approaches to build its pseudo-atomic structure. This study allowed us to resolve ArMV CP architecture and delineate connections between ArMV capsid shell and its RNA. Comparison of ArMV and GFLV CPs reveals structural differences in the B domain pocket, thus strengthening the hypothesis of a key role of this region in the viral transmission specificity and identifies new potential functional domains of Nepovirus capsid.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Nepovirus/fisiologia , Nepovirus/ultraestrutura , RNA Viral/metabolismo , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Enoplídios/virologia , Modelos Moleculares , Vírus do Mosaico/química , Vírus do Mosaico/fisiologia , Vírus do Mosaico/ultraestrutura , Nepovirus/química , Doenças das Plantas/virologia , Estrutura Terciária de Proteína
14.
J Struct Biol ; 182(2): 87-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23416645

RESUMO

A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Proteínas/química , Chaperonina 60/química , Análise de Fourier
15.
Angew Chem Int Ed Engl ; 51(14): 3340-4, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22290936

RESUMO

I'm your Venus: the crystal structure of the human methylamine-induced form of α(2)-macroglobulin (α(2)M) shows its large central cavity can accommodate two medium-sized proteinases. Twelve major entrances provide access for small substrates to the cavity and the still-active trapped "prey". The structure unveils the molecular basis of the unique "venus flytrap" mechanism of α(2)M.


Assuntos
alfa-Macroglobulinas/química , Cristalografia por Raios X , Humanos , Metilaminas/química , Inibidores de Proteases/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , alfa-Macroglobulinas/metabolismo
16.
PLoS Pathog ; 7(5): e1002034, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625570

RESUMO

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.


Assuntos
Proteínas do Capsídeo/genética , Nematoides/virologia , Nepovirus , Estrutura Quaternária de Proteína , Substituição de Aminoácidos , Animais , Capsídeo , Mutação , Nepovirus/genética , Nepovirus/metabolismo , Nepovirus/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA Viral/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Eletricidade Estática , Difração de Raios X
17.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 5): 514-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20445226

RESUMO

The combination of transmission electron microscopy with X-ray diffraction data is usually limited to relatively large particles. Here, the approach is continued one step further by utilizing negative staining, a technique that is of wider applicability than cryo-electron microscopy, to produce models of medium-size proteins suitable for molecular replacement. The technique was used to solve the crystal structure of the dodecameric type II dehydroquinase enzyme from Candida albicans (approximately 190 kDa) and that of the orthologous Streptomyces coelicolor protein.


Assuntos
Candida albicans/enzimologia , Cristalografia por Raios X/métodos , Hidroliases/química , Microscopia Eletrônica/métodos
18.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 1): 11-6, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18094462

RESUMO

An account is given of the latest developments of the AMoRe package: new rotational search algorithms, exploitation of noncrystallographic symmetry, generation and use of ensemble models and interactive graphical molecular replacement.


Assuntos
Algoritmos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Simulação por Computador , Cristalografia por Raios X , Estrutura Terciária de Proteína
19.
BMC Struct Biol ; 7: 59, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17894860

RESUMO

BACKGROUND: Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) is a central enzyme in the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida cannot synthesize purines de novo and use the salvage pathway to synthesize purine bases, making this an attractive target for antiparasitic drug design. RESULTS: The glycosomal HGPRT from Leishmania tarentolae in a catalytically active form purified and co-crystallized with a guanosine monophosphate (GMP) in the active site. The dimeric structure of HGPRT has been solved by molecular replacement and refined against data extending to 2.1 A resolution. The structure reveals the contacts of the active site residues with GMP. CONCLUSION: Comparative analysis of the active sites of Leishmania and human HGPRT revealed subtle differences in the position of the ligand and its interaction with the active site residues, which could be responsible for the different reactivities of the enzymes to allopurinol reported in the literature. The solution and analysis of the structure of Leishmania HGPRT may contribute to further investigations leading to a full understanding of this important enzyme family in protozoan parasites.


Assuntos
Hipoxantina Fosforribosiltransferase/química , Leishmania/enzimologia , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Hipoxantina Fosforribosiltransferase/antagonistas & inibidores , Hipoxantina Fosforribosiltransferase/metabolismo , Modelos Moleculares , Filogenia , Conformação Proteica
20.
Acta Crystallogr A ; 63(Pt 2): 126-30, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17301472

RESUMO

The metric of the SO(3) group of rotations can be used to define the angular resolution of a function of rotations. The resolution is related to the degree of the highest representation present in the expansion of the function in terms of Wigner functions. The peculiar non-Euclidean metric of the rotation domain, however, implies that the terms which effectively contribute to the expansion vary through two-dimensional sections of the rotation domain and are within limiting resolution circles in two-dimensional reciprocal sections. This reconciles an economic sampling of the expansion with the acceleration provided by fast Fourier transform (FFT) techniques.


Assuntos
Cristalografia por Raios X/métodos , Matemática , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...