Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107282, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604564

RESUMO

The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.

2.
Front Cell Infect Microbiol ; 13: 1177857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197203

RESUMO

Streptococcus pneumoniae is capable of randomly switching their genomic DNA methylation pattern between six distinct bacterial subpopulations (A-F) via recombination of a type 1 restriction-modification locus, spnIII. These pneumococcal subpopulations exhibit phenotypic changes which favor carriage or invasive disease. In particular, the spnIIIB allele has been associated with increased nasopharyngeal carriage and the downregulation of the luxS gene. The LuxS/AI-2 QS system represent a universal language for bacteria and has been linked to virulence and biofilm formation in S. pneumoniae. In this work, we have explored the link between spnIII alleles, the luxS gene and virulence in two clinical pneumococcal isolates from the blood and cerebrospinal fluid (CSF) of one pediatric meningitis patient. The blood and CSF strains showed different virulence profiles in mice. Analysis of the spnIII system of these strains recovered from the murine nasopharynx showed that the system switched to different alleles commensurate with the initial source of the isolate. Of note, the blood strain showed high expression of spnIIIB allele, previously linked with less LuxS protein production. Importantly, strains with deleted luxS displayed different phenotypic profiles compared to the wildtype, but similar to the strains recovered from the nasopharynx of infected mice. This study used clinically relevant S. pneumoniae strains to demonstrate that the regulatory network between luxS and the type 1 restriction-modification system play a key role in infections and may support different adaptation to specific host niches.


Assuntos
Meningite Pneumocócica , Camundongos , Animais , Enzimas de Restrição-Modificação do DNA/genética , Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Streptococcus pneumoniae , Biofilmes
3.
Cell Host Microbe ; 31(1): 7-8, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36634623

RESUMO

Efficient colonization of new hosts is critical for survival of Streptococcus pneumoniae. In this issue of Cell Host & Microbe, Aggarwal et al. investigate the population dynamics of this process, demonstrating how a quorum-sensing bacteriocin locus promotes survival of individual clonal lineages, providing a population bottleneck and restricting genetic diversity.


Assuntos
Bacteriocinas , Infecções Pneumocócicas , Bacteriocinas/genética , Percepção de Quorum , Streptococcus pneumoniae/genética
4.
PLoS One ; 17(7): e0271912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877653

RESUMO

Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis are bacterial species which frequently co-colonise the nasopharynx, but can also transit to the middle ear to cause otitis media. Chronic otitis media is often associated with a polymicrobial infection by these bacteria. However, despite being present in polymicrobial infections, the molecular interactions between these bacterial species remain poorly understood. We have previously reported competitive interactions driven by pH and growth phase between H. influenzae and S. pneumoniae. In this study, we have revealed competitive interactions between the three otopathogens, which resulted in reduction of H. influenzae viability in co-culture with S. pneumoniae and in triple-species culture. Transcriptomic analysis by mRNA sequencing identified a central role of arginine in mediating these interactions. Arginine supplementation was able to increase H. influenzae survival in a dual-species environment with S. pneumoniae, and in a triple-species environment. Arginine was used by H. influenzae for ATP production, and levels of ATP generated in dual- and triple-species co-culture at early stages of growth were significantly higher than the combined ATP levels of single-species cultures. These results indicate a central role for arginine-mediated ATP production by H. influenzae in the polymicrobial community.


Assuntos
Coinfecção , Otite Média , Trifosfato de Adenosina , Arginina , Coinfecção/microbiologia , Haemophilus influenzae/genética , Humanos , Moraxella catarrhalis/genética , Otite Média/microbiologia , Streptococcus pneumoniae/genética
5.
Microbiol Spectr ; 10(3): e0091622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536022

RESUMO

Streptococcus pneumoniae is the most common cause of bacterial illness worldwide. Current vaccines based on the polysaccharide capsule are only effective against a limited number of the >100 capsular serotypes. A universal vaccine based on conserved protein antigens requires a thorough understanding of gene expression in S. pneumoniae. All S. pneumoniae strains encode the SpnIII Restriction-Modification system. This system contains a phase-variable methyltransferase that switches specificity, and controls expression of multiple genes-a phasevarion. We examined the role of this phasevarion during pneumococcal pathobiology, and determined if phase variation resulted in differences in expression of currently investigated conserved protein antigens. Using locked strains that express a single methyltransferase specificity, we found differences in clinically relevant traits, including survival in blood, and adherence to and invasion of human cells. We also observed differences in expression of numerous proteinaceous vaccine candidates, which complicates selection of antigens for inclusion in a universal protein-based pneumococcal vaccine. This study will inform vaccine design against S. pneumoniae by ensuring only stably expressed candidates are included in a rationally designed vaccine. IMPORTANCE S. pneumoniae is the world's foremost bacterial pathogen. S. pneumoniae encodes a phasevarion (phase-variable regulon), that results in differential expression of multiple genes. Previous work demonstrated that the pneumococcal SpnIII phasevarion switches between six different expression states, generating six unique phenotypic variants in a pneumococcal population. Here, we show that this phasevarion generates multiple phenotypic differences relevant to pathobiology. Importantly, expression of conserved protein antigens varies with phasevarion switching. As capsule expression, a major pneumococcal virulence factor, is also controlled by the phasevarion, our work will inform the selection of the best candidates to include in a rationally designed, universal pneumococcal vaccine.


Assuntos
Variação de Fase , Streptococcus pneumoniae , Humanos , Metiltransferases/genética , Vacinas Pneumocócicas/genética , Virulência
6.
Front Cell Infect Microbiol ; 12: 866259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433506

RESUMO

Streptococcus pneumoniae is the leading cause of bacterial paediatric meningitis after the neonatal period worldwide, but the bacterial factors and pathophysiology that drive pneumococcal meningitis are not fully understood. In this work, we have identified differences in raffinose utilization by S. pneumoniae isolates of identical serotype and sequence type from the blood and cerebrospinal fluid (CSF) of a single pediatric patient with meningitis. The blood isolate displayed defective raffinose metabolism, reduced transcription of the raffinose utilization pathway genes, and an inability to grow in vitro when raffinose was the sole carbon source. The fitness of these strains was then assessed using a murine intranasal infection model. Compared with the CSF isolate, mice infected with the blood isolate displayed higher bacterial numbers in the nose, but this strain was unable to invade the ears of infected mice. A premature stop codon was identified in the aga gene in the raffinose locus, suggesting that this protein likely displays impaired alpha-galactosidase activity. These closely related strains were assessed by Illumina sequencing, which did not identify any single nucleotide polymorphisms (SNPs) between the two strains. However, these wider genomic analyses identified the presence of an alternative alpha-galactosidase gene that appeared to display altered sequence coverage between the strains, which may account for the observed differences in raffinose metabolic capacity. Together, these studies support previous findings that raffinose utilization capacity contributes to disease progression, and provide insight into a possible alternative means by which perturbation of this pathway may influence the behavior of pneumococci in the host environment, particularly in meningitis.


Assuntos
Streptococcus pneumoniae , alfa-Galactosidase , Animais , Criança , Humanos , Camundongos , Fenótipo , Rafinose/metabolismo , Sorogrupo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
7.
Pathogens ; 11(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35215159

RESUMO

The LuxS protein, encoded by luxS, is required for the production of autoinducer 2 (AI-2) in Streptococcus pneumoniae. The AI-2 molecule serves as a quorum sensing signal, and thus regulates cellular processes such as carbohydrate utilisation and biofilm formation, as well as impacting virulence. The role of luxS in S. pneumoniae biology and lifestyle has been predominantly assessed in the laboratory strain D39. However, as biofilm formation, which is regulated by luxS, is critical for the ability of S. pneumoniae to cause otitis media, we investigated the role of luxS in a middle ear isolate, strain 947. Our results identified luxS to have a role in prevention of S. pneumoniae transition from colonisation of the nasopharynx to the ear, and in facilitating adherence to host epithelial cells.

8.
mBio ; 12(3): e0107021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34134514

RESUMO

Acinetobacter baumannii is one of the world's most problematic nosocomial pathogens. The combination of its intrinsic resistance and ability to acquire resistance markers allow this organism to adjust to antibiotic treatment. Despite being the primary barrier against antibiotic stress, our understanding of the A. baumannii membrane composition and its impact on resistance remains limited. In this study, we explored how the incorporation of host-derived polyunsaturated fatty acids (PUFAs) is associated with increased antibiotic susceptibility. Functional analyses of primary A. baumannii efflux systems indicated that AdeB-mediated antibiotic resistance was impacted by PUFA treatment. Molecular dynamics simulations of AdeB identified a specific morphological disruption of AdeB when positioned in the PUFA-enriched membrane. Collectively, we have shown that PUFAs can impact antibiotic efficacy via a vital relationship with antibiotic efflux pumps. Furthermore, this work has revealed that A. baumannii's unconditional desire for fatty acids may present a possible weakness in its multidrug resistance capacity. IMPORTANCE Antimicrobial resistance is an emerging global health crisis. Consequently, we have a critical need to prolong our current arsenal of antibiotics, in addition to the development of novel treatment options. Due to their relatively high abundance at the host-pathogen interface, PUFAs and other fatty acid species not commonly synthesized by A. baumannii may be actively acquired by A. baumannii during infection and change the biophysical properties of the membrane beyond that studied in standard laboratory culturing media. Our work illustrates how the membrane phospholipid composition impacts membrane protein function, which includes an important multidrug efflux system in extensively-drug-resistant A. baumannii. This work emphasizes the need to consider including host-derived fatty acids in in vitro analyses of A. baumannii. On a broader scope, this study presents new findings on the potential health benefits of PUFA in individuals at risk of contracting A. baumannii infections or those undergoing antibiotic treatment.


Assuntos
Acinetobacter baumannii/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana Transportadoras/química , Acinetobacter baumannii/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Ácidos Graxos Insaturados/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular
9.
mBio ; 12(3): e0092821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34134515

RESUMO

Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium's lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy. IMPORTANCE Acinetobacter baumannii is one of the world's most problematic superbugs and is associated with significant morbidity and mortality in the hospital environment. The critical need for new antimicrobial strategies is recognized, but our understanding of its behavior and adaptation to a changing environment during infection is limited. Here, we investigated the role of fatty acids at the host-pathogen interface using a mouse model of disease. We provide comprehensive insights into the bacterial membrane composition when the bacteria colonize the pleural cavity. Furthermore, we show that A. baumannii heavily relies upon making its own fatty acids when residing in the blood, whereas the bacterium favors fatty acid acquisition in most other host niches. Our new knowledge aids in understanding the importance of host fatty acids in infectious diseases. Furthermore, fatty acid synthesis is an attractive target for the development of new antimicrobial strategies, but our work emphasizes the critical need to understand microbial lipid homeostasis before this can be deemed suitable.


Assuntos
Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Membrana Celular/química , Ácidos Graxos/biossíntese , Homeostase , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Adaptação Fisiológica , Animais , Membrana Celular/metabolismo , Ácidos Graxos/análise , Humanos , Lipidômica , Camundongos , Fosfolipídeos/análise
10.
ACS Infect Dis ; 7(8): 2221-2228, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34100578

RESUMO

Maintaining optimal fluidity is essential to ensure adequate membrane structure and function under different environmental conditions. We apply integrated molecular approaches to characterize two desaturases (DesA and DesB) and define their specific roles in unsaturated fatty acid (UFA) production in Acinetobacter baumannii. Using a murine model, we reveal DesA to play a minor role in colonization of the respiratory tract, whereas DesB is important during invasive disease. Furthermore, using transcriptomic and bioinformatic analyses, a global regulator involved in fatty acid homeostasis and members of its regulon are characterized. Collectively, we show that DesA and DesB are primary contributors to UFA production in A. baumannii with infection studies illustrating that these distinct desaturases aid in the bacterium's ability to survive in multiple host niches. Hence, this study provides novel insights into the fundamentals of A. baumannii lipid biology, which contributes to the versatility of this critical bacterial pathogen.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados , Camundongos
11.
Trends Microbiol ; 29(9): 768-771, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33612397

RESUMO

Streptococcus pneumoniae is a major human pathogen that can spread to multiple sites in the body. However, the mechanisms dictating disease spread are not well understood. Here we highlight the importance of carbohydrate utilization systems on pneumococcal disease, offering insight into how this pathogen causes a spectrum of disease.


Assuntos
Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/metabolismo , Açúcares/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Virulência
12.
Pathog Dis ; 79(1)2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33301554

RESUMO

Factors facilitating the chronicity of otitis media (OM) in children are, to date, not fully understood. An understanding of molecular factors aiding bacterial persistence within the middle ear during OM could reveal pathways required for disease. This study performed a detailed analysis of Streptococcus pneumoniae populations isolated from the nasopharynx and middle ear of one OM case. Isolates were assessed for growth in vitro and infection in a mouse intranasal challenge model. Whole genome sequencing was performed to compare the nasopharyngeal and middle ear isolates. The middle ear isolate displayed a reduced rate of growth and enhanced potential to transit to the middle ear in a murine model. The middle ear population possessed a single nucleotide polymorphism (SNP) in the IgA1 protease gene igA, predicted to render its product non-functional. Allelic exchange mutagenesis of the igA alleles from the genetic variant middle ear and nasopharyngeal isolates was able to reverse the niche-adaptation phenotype in the murine model. These results indicate the potential role of a SNP in the gene encoding the IgA1 protease, in determining S. pneumoniae adaptation to the middle ear during chronic OM. In contrast, a functional IgA1 protease was associated with increased colonisation of the nasopharynx.


Assuntos
Adaptação Biológica , Orelha Média/microbiologia , Nasofaringe/microbiologia , Otite Média/microbiologia , Serina Endopeptidases/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Animais , Doença Crônica , DNA Bacteriano , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Mutagênese , Fenótipo , Infecções Pneumocócicas/microbiologia , Polimorfismo de Nucleotídeo Único , Streptococcus pneumoniae/isolamento & purificação , Sequenciamento Completo do Genoma
13.
J Bacteriol ; 203(1)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33046563

RESUMO

Streptococcus pneumoniae (the pneumococcus) is a formidable human pathogen that is capable of asymptomatically colonizing the nasopharynx. Progression from colonization to invasive disease involves adaptation to distinct host niches, which vary markedly in the availability of key nutrients such as sugars. We previously reported that cell-cell signaling via the autoinducer 2 (AI-2)/LuxS quorum-sensing system boosts the capacity of S. pneumoniae to utilize galactose as a carbon source by upregulation of the Leloir pathway. This resulted in increased capsular polysaccharide production and a hypervirulent phenotype. We hypothesized that this effect was mediated by phosphorylation of GalR, the transcriptional activator of the Leloir pathway. GalR is known to possess three putative phosphorylation sites, S317, T319, and T323. In the present study, derivatives of S. pneumoniae D39 with putative phosphorylation-blocking alanine substitution mutations at each of these GalR sites (singly or in combination) were constructed. Growth assays and transcriptional analyses revealed complex phenotypes for these GalR mutants, with impacts on the regulation of both the Leloir and tagatose 6-phosphate pathways. The alanine substitution mutations significantly reduced the capacity of pneumococci to colonize the nasopharynx, middle ear, and lungs in a murine intranasal challenge model.IMPORTANCE Pneumococcal survival in the host and capacity to transition from a commensal to a pathogenic lifestyle are closely linked to the organism's ability to utilize specific nutrients in distinct niches. Galactose is a major carbon source for pneumococci in the upper respiratory tract. We have shown that both the Leloir and tagatose 6-phosphate pathways are necessary for pneumococcal growth in galactose and demonstrated GalR-mediated interplay between the two pathways. Moreover, the three putative phosphorylation sites in the transcriptional regulator GalR play a critical role in galactose metabolism and are important for pneumococcal colonization of the nasopharynx, middle ear, and lungs.


Assuntos
Galactose/metabolismo , Mutação/genética , Proteínas Repressoras/genética , Streptococcus pneumoniae/genética , Animais , Orelha Média/microbiologia , Feminino , Galactose/genética , Expressão Gênica , Humanos , Pulmão/microbiologia , Camundongos , Mutagênese Sítio-Dirigida , Nasofaringe/microbiologia , Fosforilação , Proteínas Repressoras/química , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo
14.
Commun Biol ; 3(1): 293, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504007

RESUMO

Streptococcus pneumoniae is a genetically diverse human-adapted pathogen commonly carried asymptomatically in the nasopharynx. We have recently shown that a single nucleotide polymorphism (SNP) in the raffinose pathway regulatory gene rafR accounts for a difference in the capacity of clonally-related strains to cause localised versus systemic infection. Using dual RNA-seq, we show that this SNP affects expression of bacterial genes encoding multiple sugar transporters, and fine-tunes carbohydrate metabolism, along with extensive rewiring of host transcriptional responses to infection, particularly expression of genes encoding cytokine and chemokine ligands and receptors. The data predict a crucial role for differential neutrophil recruitment (confirmed by in vivo neutrophil depletion and IL-17 neutralization) indicating that early detection of bacteria by the host in the lung environment is crucial for effective clearance. Thus, dual RNA-seq provides a powerful tool for understanding complex host-pathogen interactions and reveals how a single bacterial SNP can drive differential disease outcomes.


Assuntos
Interação Gene-Ambiente , Interações Hospedeiro-Patógeno/genética , Infiltração de Neutrófilos , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Transcriptoma , Tropismo , Animais , Metabolismo dos Carboidratos , Feminino , Regulação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Infecções Pneumocócicas/microbiologia , RNA-Seq , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade , Virulência
15.
PLoS Pathog ; 16(3): e1008332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130269

RESUMO

Pathogens of the Streptococcus genus inhabit many different environmental niches during the course of an infection in a human host and the bacteria must adjust their metabolism according to available nutrients. Despite their lack of the citric-acid cycle, some streptococci proliferate in niches devoid of a readily available carbohydrate source. Instead they rely on carbohydrate scavenging for energy acquisition, which are obtained from the host. Here we discover a two-component system (TCS07) of Streptococcus pneumoniae that responds to glycoconjugated structures on proteins present on the host cells. Using next-generation RNA sequencing we find that the uncharacterized TCS07 regulon encodes proteins important for host-glycan processing and transporters of the released glycans, as well as intracellular carbohydrate catabolizing enzymes. We find that a functional TCS07 allele is required for growth on the glycoconjugated model protein fetuin. Consistently, we see a TCS07-dependent activation of the glycan degradation pathway. Thus, we pinpoint the molecular constituents responsible for sensing host derived glycans and link this to the induction of the proteins necessary for glycan degradation. Furthermore, we connect the TCS07 regulon to virulence in a mouse model, thereby establishing that host-derived glycan-metabolism is important for infection in vivo. Finally, a comparative phylogenomic analysis of strains from the Streptococcus genus reveal that TCS07 and most of its regulon is specifically conserved in species that utilize host-glycans for growth.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Pneumocócicas/metabolismo , Polissacarídeos/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Infecções Pneumocócicas/microbiologia , Regulon , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Virulência
16.
Microbiol Spectr ; 7(2)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30977464

RESUMO

The polysaccharide capsule of Streptococcus pneumoniae is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.


Assuntos
Cápsulas Bacterianas/fisiologia , Polissacarídeos Bacterianos/fisiologia , Streptococcus pneumoniae/fisiologia , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Humanos , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade
17.
mBio ; 10(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30647157

RESUMO

Streptococcus pneumoniae is commonly carried asymptomatically in the human nasopharynx, but it also causes serious and invasive diseases such as pneumonia, bacteremia, and meningitis, as well as less serious but highly prevalent infections such as otitis media. We have previously shown that closely related pneumococci (of the same capsular serotype and multilocus sequence type [ST]) can display distinct pathogenic profiles in mice that correlate with clinical isolation site (e.g., blood versus ear), suggesting stable niche adaptation within a clonal lineage. This has provided an opportunity to identify determinants of disease tropism. Genomic analysis identified 17 and 27 single nucleotide polymorphisms (SNPs) or insertions/deletions in protein coding sequences between blood and ear isolates of serotype 14 ST15 and serotype 3 ST180, respectively. SNPs in raffinose uptake and utilization genes (rafR or rafK) were detected in both serotypes/lineages. Ear isolates were consistently defective in growth in media containing raffinose as the sole carbon source, as well as in expression of raffinose pathway genes aga, rafG, and rafK, relative to their serotype/ST-matched blood isolates. Similar differences were also seen between serotype 23F ST81 blood and ear isolates. Analysis of rafR allelic exchange mutants of the serotype 14 ST15 blood and ear isolates demonstrated that the SNP in rafR was entirely responsible for their distinct in vitro phenotypes and was also the determinant of differential tropism for the lungs versus ear and brain in a mouse intranasal challenge model. These data suggest that the ability of pneumococci to utilize raffinose determines the nature of disease.IMPORTANCES. pneumoniae is a component of the commensal nasopharyngeal microflora of humans, but from this reservoir, it can progress to localized or invasive disease with a frequency that translates into massive global morbidity and mortality. However, the factors that govern the switch from commensal to pathogen, as well as those that determine disease tropism, are poorly understood. Here we show that capacity to utilize raffinose can determine the nature of the disease caused by a given pneumococcal strain. Moreover, our findings provide an interesting example of convergent evolution, whereby pneumococci belonging to two unrelated serotypes/lineages exhibit SNPs in separate genes affecting raffinose uptake and utilization that correlate with distinct pathogenic profiles in vivo This further underscores the critical role of differential carbohydrate metabolism in the pathogenesis of localized versus invasive pneumococcal disease.


Assuntos
Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Rafinose/metabolismo , Streptococcus pneumoniae/fisiologia , Tropismo Viral , Animais , Sangue/microbiologia , Carbono/metabolismo , Meios de Cultura/química , Modelos Animais de Doenças , Orelha/microbiologia , Genótipo , Humanos , Redes e Vias Metabólicas/genética , Camundongos , Polimorfismo de Nucleotídeo Único , Sorogrupo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação
18.
Nat Microbiol ; 4(1): 8-9, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30546097
19.
Pathog Dis ; 76(7)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285091

RESUMO

Haemophilus influenzae and Streptococcus pneumoniae are known aetiologic agents of chronic otitis media, frequently as a multispecies infection. In this study, we show that the outcome of H. influenzae/S. pneumoniae interactions is dependent on the nutrient source. In continuous culture containing chemically defined media with lactose, S. pneumoniae was non-viable in mono-culture, and in co-culture remained non-viable until 288 h. With glucose, S. pneumoniae became non-viable in mono-culture, but uniquely existed in 3 distinct states in co-culture: parental cells (until 24 h), a dormant state until 336 h and its re-emergence as a non-mucoidal, small colony variant (SCV). The S. pneumoniae SCV was stable and whole genome sequencing showed three major single nucleotide polymorphisms in the SCV cells-cap3A (capsule biosynthesis pathway), fpg (DNA glycosylase of the DNA repair mechanism) and glutamate-5-kinase. Previously, fpg mutants have shown increased mutator rates, permitting bacterial survival against host-generated stresses. Transcriptomics showed these SCV cells up-regulated sugar transporters and toxin/antitoxin systems. An animal model revealed a reduced survival in the lungs and ear by SCV cells. This is the first study documenting the effect of carbon source and the development of a distinct S. pneumoniae cell type during H. influenzae/S. pneumoniae interactions.


Assuntos
Haemophilus influenzae/crescimento & desenvolvimento , Interações Microbianas , Polissacarídeos Bacterianos/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Técnicas Bacteriológicas , Técnicas de Cocultura , Meios de Cultura/química , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Bacterianos , Viabilidade Microbiana , Mutação , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Polimorfismo de Nucleotídeo Único , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Virulência , Sequenciamento Completo do Genoma
20.
Cell Host Microbe ; 21(1): 5-6, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28081444

RESUMO

Host-to-host transmission is critical for survival of the human-adapted bacterium Streptococcus pneumoniae. In this issue of Cell Host & Microbe, Zafar et al. (2017) show that transmission is dependent on nasopharyngeal inflammation elicited by the toxin pneumolysin, causing increased shedding and enhanced survival of the bacterium in the environment.


Assuntos
Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Proteínas de Bactérias , Humanos , Nasofaringe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...