Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836071

RESUMO

Four commercial high-performance aerospace aromatic epoxy matrices, CYCOM®890, CYCOM®977-2, PR520, and PRISM EP2400, were cured to a standardised 2 h, 180 °C cure cycle and evaluated in quasi-static uniaxial compression, as well as by dynamic scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermoplastic toughened CYCOM®977-2 formulation displayed an overall increase in true axial stress values across the entire stress-strain curve relative to the baseline CYCOM®890 sample. The particle-toughened PR520 sample exhibited an overall decrease in true axial stress values past the yield point of the material. The PRISM EP2400 resin, with combined toughening agents, led to true axial stress values across the entire plastic region of the stress-strain curve, which were in line with the stress values observed with the CYCOM®890 material. Interestingly, for all formulations, the dilation angles (associated with the volume change during plastic deformation), recorded at 0.3 plastic strain, were close to 0°, with the variations reflecting the polymer structure. Compression data collected for this series of commercial epoxy resins are in broad agreement with a selection of model epoxy resins based on di- and tetra-functional monomers, cured with polyamines or dicarboxylic anhydrides. However, the fully formulated resins demonstrate a significantly higher compressive modulus than the model resins, albeit at the expense of yield stress.

2.
J R Soc Interface ; 16(154): 20180965, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31064257

RESUMO

In Nature, despite the diversity of materials, patterns and structural designs, the majority of biomineralized systems share a common feature: the incorporation of multiple sets of discrete elements across different length scales. This paper is the first to assess whether the design features observed in the hexactinellid sea sponge Euplectella aspergillum can be transferred and implemented for the development of new structurally efficient engineering architectures manufactured by three-dimensional (3D) additive manufacturing (AM). We present an investigation into the design and survival strategies found in the biological system and evaluate their translation into a scaled engineering analogue assessed experimentally and through finite-element (FE) simulations. Discrete sections of the skeletal lattice were evaluated and tested in an in situ compression fixture using micro-computed tomography (µCT). This methodology permitted the characterization of the hierarchical organization of the siliceous skeleton; a multi-layered arrangement with a fusion between struts to improve the local energy-absorbing capabilities. It was observed that the irregular overlapping architecture of spicule-nodal point sub-structure offers unique improvements in the global strength and stiffness of the structure. The 3D data arising from the µCT of the skeleton were used to create accurate FE models and replication through 3D AM. The printed struts in the engineering analogue were homogeneous, comprising bonded ceramic granular particles (10-100 µm) with an outer epoxy infused shell. In these specimens, the compressive response of the sample was expected to be dynamic and catastrophic, but while the specimens showed a similar initiation and propagation failure pattern to E. aspergillum, the macroscopic deformation behaviour was altered from the expected predominantly brittle behaviour to a more damage tolerant quasi-brittle failure mode. In addition, the FE simulation of the printed construct predicted the same global failure response (initiation location and propagation directionality) as observed in E. aspergillum. The ability to mimic directly the complex material construction and design features in E. aspergillum is currently beyond the latest advances in AM. However, while acknowledging the material-dominated limitations, the results presented here highlight the considerable potential of direct mimicry of biomineralized lattice architectures as future light-weight damage tolerant composite structures.


Assuntos
Organismos Aquáticos , Materiais Biomiméticos/química , Poríferos/anatomia & histologia , Impressão Tridimensional , Animais , Microtomografia por Raio-X
3.
Ultrasonics ; 54(4): 1015-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24360815

RESUMO

We report the successful manufacture of short fibre reinforced polymer composites via the process of ultrasonic assembly. An ultrasonic device is developed allowing the manufacture of thin layers of anisotropic composite material. Strands of unidirectional reinforcement are, in response to the acoustic radiation force, shown to form inside various matrix media. The technique proves suitable for both photo-initiator and temperature controlled polymerisation mechanisms. A series of glass fibre reinforced composite samples constructed in this way are subjected to tensile loading and the stress-strain response is characterised. Structural anisotropy is clearly demonstrated, together with a 43% difference in failure stress between principal directions. The average stiffnesses of samples strained along the direction of fibre reinforcement and transversely across it were 17.66±0.63MPa and 16.36±0.48MPa, respectively.

4.
Vet Comp Orthop Traumatol ; 26(3): 177-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460373

RESUMO

OBJECTIVE: To compare the biomechanical behaviour of plate-rod constructs with varying numbers of monocortical screws applied to an ex vivo canine femoral-gap ostectomy model. SAMPLE POPULATION: Twenty Greyhound dog cadaveric femurs. METHODS: Bone mineral density (BMD) was assessed with dual x-ray absorptiometry. Bones were assigned to four groups. Bones had a 12-hole 3.5 mm locking compression plate with one bicortical non-locking cortical screw in the most proximal and distal plate holes and an intramedullary Steinmann pin applied across a 20 mm mid-diaphyseal ostectomy. Additionally, one to four monocortical non-locking cortical screws were then placed (Groups 1-4 respectively) in the proximal and distal fragments. Stiffness and axial collapse were determined before and after cyclic axial loading (6000 cycles at 20%, 40%, and 60% of mean bodyweight [total: 18000 cycles]). Constructs subsequently underwent an additional 45000 cycles at 60% of bodyweight (total: 63000 cycles). Loading to failure was then performed and ultimate load and mode of failure recorded. RESULTS: The BMD did not differ significantly between groups. Construct stiffness for group 1 was significantly less than group 4 (p = 0.008). Stiffness showed a linear increase with an increasing number of monocortical screws (p = 0.001). All constructs survived fatigue loading. Load-to-failure was not significantly different between groups. Mean load- to-failure of all groups was >1350N. CLINICAL RELEVANCE: Ex vivo canine large-breed femurs showed adequate stability biomechanically and gradually increasing stiffness with increasing monocortical screw numbers.


Assuntos
Placas Ósseas/veterinária , Parafusos Ósseos/veterinária , Cães , Fêmur/cirurgia , Absorciometria de Fóton , Animais , Fenômenos Biomecânicos , Densidade Óssea , Cadáver
5.
J R Soc Interface ; 7(49): 1229-41, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20150337

RESUMO

A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension.


Assuntos
Carbono , Polímeros/química , Fibra de Carbono , Força Compressiva , Análise de Elementos Finitos
6.
J R Soc Interface ; 7(47): 921-31, 2010 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-19955122

RESUMO

This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a 'lost-wax' technique, orthogonal hollow vascules, inspired by the 'ray cell' structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure.


Assuntos
Resinas Epóxi/química , Carbono , Fibra de Carbono , Força Compressiva , Maleabilidade , Polímeros/química , Porosidade , Prunella , Raios X
7.
J R Soc Interface ; 5(24): 735-47, 2008 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17999947

RESUMO

Self-healing via a vascular network is an active research topic, with several recent publications reporting the application and optimization of these systems. This work represents the first consideration of the probable failure modes of a self-healing system as a driver for network design. The critical failure modes of a proposed self-healing system based on a vascular network were identified via a failure modes, effects and criticality analysis and compared to those of the human circulatory system. A range of engineering and biomimetic design concepts to address these critical failure modes is suggested with minimum system mass the overall design driver for high-performance systems. Plant vasculature has been mimicked to propose a segregated network to address the risk of fluid leakage. This approach could allow a network to be segregated into six separate paths with a system mass penalty of only approximately 25%. Fluid flow interconnections that mimic the anastomoses of animal vasculatures can be used within a segregated network to balance the risk of failure by leakage and blockage. These biomimetic approaches define a design space that considers the existing published literature in the context of system reliability.


Assuntos
Materiais Biomiméticos , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Sistema Cardiovascular/fisiopatologia , Humanos , Plantas
8.
J R Soc Interface ; 5(18): 55-65, 2008 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-17426011

RESUMO

A biomimetic analysis is presented in which an expression for the optimum vessel diameter for the design of minimum mass branching or vascular networks in engineering applications is derived. Agreement with constructal theory is shown. A simple design case is illustrated and application to more complex cases with branching networks of several generations discussed. The analysis is also extended into the turbulent flow regime, giving an optimization tool with considerable utility in the design of fluid distribution systems. The distribution of vessel lengths in different generations was also found to be a useful design variable. Integrating a network into a structure is also discussed. Where it is necessary to adopt a non-optimum vessel diameter for structural integration, it has been shown that small deviations from the minimum mass optimum can be tolerated, but large variations could be expected to produce a punitive and rapidly increasing mass penalty.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Modelos Cardiovasculares , Animais , Humanos
9.
Bioinspir Biomim ; 2(1): P1-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17671320

RESUMO

Autonomic self-healing materials, where initiation of repair is integral to the material, are being developed for engineering applications. This bio-inspired concept offers the designer an ability to incorporate secondary functional materials capable of counteracting service degradation whilst still achieving the primary, usually structural, requirement. Most materials in nature are themselves self-healing composite materials. This paper reviews the various self-healing technologies currently being developed for fibre reinforced polymeric composite materials, most of which are bioinspired, inspired by observation of nature. The most recent self-healing work has attempted to mimic natural healing through the study of mammalian blood clotting and the design of vascular networks found in biological systems. A perspective on current and future self-healing approaches using this biomimetic technique is offered. The intention is to stimulate debate outside the engineering community and reinforce the importance of a multidisciplinary approach in this exciting field.


Assuntos
Materiais Biomiméticos/química , Biomimética/métodos , Biomimética/tendências , Polímeros/química , Regeneração
10.
J R Soc Interface ; 4(13): 363-71, 2007 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-17251131

RESUMO

Self-healing is receiving an increasing amount of worldwide interest as a method to autonomously address damage in materials. The incorporation of a self-healing capability within fibre-reinforced polymers has been investigated by a number of workers previously. The use of functional repair components stored inside hollow glass fibres (HGF) is one such bioinspired approach being considered. This paper considers the placement of self-healing HGF plies within both glass fibre/epoxy and carbon fibre/epoxy laminates to mitigate damage occurrence and restore mechanical strength. The study investigates the effect of embedded HGF on the host laminates mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact damage. The results of flexural testing have shown that a significant fraction of flexural strength can be restored by the self-repairing effect of a healing resin stored within hollow fibres.


Assuntos
Adesivos/química , Facetas Dentárias , Vidro/química , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA