Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1381, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914623

RESUMO

Lack of reproducibility hampers molecular devices integration into large-scale circuits. Thus, incorporating operando characterization can facilitate the understanding of multiple features producing disparities in different devices. In this work, we report the realization of hybrid molecular graphene field effect transistors (m-GFETs) based on 11-(Ferrocenyl)undecanethiol (FcC11SH) micro self-assembled monolayers (µSAMs) and high-quality graphene (Gr) in a back-gated configuration. On the one hand, Gr enables redox electron transfer, avoids molecular degradation and permits operando spectroscopy. On the other hand, molecular electrode decoration shifts the Gr Dirac point (VDP) to neutrality and generates a photocurrent in the Gr electron conduction regime. Benefitting from this heterogeneous response, the m-GFETs can implement optoelectronic AND/OR logic functions. Our approach represents a step forward in the field of molecular scale electronics with implications in sensing and computing based on sustainable chemicals.

2.
ACS Appl Mater Interfaces ; 11(23): 21018-21029, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117425

RESUMO

This paper describes how the intensive (tunneling decay coefficient ß and rectification ratio R) and extensive (current density J) properties of Ag-S(CH2) n-1CH3//GaO x/EGaIn junctions ( n = 10, 14, 18) and molecular diodes of the form of Ag-S(CH2)11Fc//GaO x/EGaIn depend on Ageo, the contact area between the self-assembled monolayer and the cone-shaped EGaIn tip. Large junctions with Ageo ≥ 1000 µm2 are unreliable and defects, such as pinholes, dominate the charge transport characteristics. For S(CH2)11Fc SAMs, R decreases from 130 to unity with increasing Ageo due to an increase in the leakage current (the current flowing across the junction at reverse bias when the diodes block current flow). The value of ß decreases from 1.00 ± 0.06 n-1 to 0.70 ± 0.03 n-1 with increasing Ageo which also indicates that large junctions suffer from defects. Small junctions with Ageo ≤ 300 µm2 are not stable due to the high surface tension of the bulk EGaIn resulting in unstable EGaIn tips. In addition, the contact area for such small junctions is dominated by the rough tip apex reducing the effective contact area and reproducibility significantly. The contact area of very large junctions is dominated by the relatively smooth side walls of the tips. Our findings show that there is an optimum range for the value of Ageo between 300-500 µm2 where the electrical properties of the junctions are dominated by molecular effects. In this range of Ageo, the value of J (defined by I/ Ageo where I is the measured current) increases with Ageo until it plateaus for junctions with Ageo > 1000 µm2 in agreement with recently reported findings by the Whitesides group. In this regime reproducible measurements of J can be obtained provided Ageo is kept constant.

3.
Anal Chem ; 89(20): 11061-11069, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28949516

RESUMO

The aim of the present work is to explore the combination of atomic force electrochemical microscopy, operated in molecule touching mode (Mt/AFM-SECM), and of dense nanodot arrays, for designing an electrochemically addressable molecular nanoarray platform. A high density nanoarray of single grained gold nanodots (∼15 nm-diameter nanoparticles, 100 nm pitch) is decorated by a model molecular system, consisting of ferrocene (Fc) labeled polyethylene glycol (PEG) disulfide chains. We show that the high resolution of Mt/AFM-SECM enables the electrochemical interrogation of several hundreds of individual nanodots in a single image acquisition. As a result, the statistical dispersion of the nanodot molecular occupancy by Fc-PEG chains can be reliably quantified, evidencing that as little as a few tens of copies of redox-labeled macromolecules immobilized on individual nanodots can be detected. The electrochemical reactivity of individual nanodots can also be reliably sampled over a large population of nanodots. We evidence that the heterogeneous rate constant characterizing the electron transfer between the nanodots and the Fc heads displays some quantifiable variability but that the electron transfer remains in any case in the quasi-reversible regime. Overall, we demonstrate that Mt/AFM-SECM enables high throughput reading of dense nanoarrays, with a sensitivity and a read-out speed considerably higher than previously reported for scanning electrochemical microscopy (SECM) imaging of molecular microarrays.

4.
Beilstein J Nanotechnol ; 5: 1918-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383303

RESUMO

E-beam lithography has been used for reliable and versatile fabrication of sub-15 nm single-crystal gold nanoarrays and led to convincing applications in nanotechnology. However, so far this technique was either too slow for centimeter to wafer-scale writing or fast enough with the so-called dot on the fly (DOTF) technique but not optimized for sub-15 nm dots dimension. This prevents use of this technology for some applications and characterization techniques. Here, we show that the DOTF technique can be used without degradation in dots dimension. In addition, we propose two other techniques. The first one is an advanced conventional technique that goes five times faster than the conventional one. The second one relies on sequences defined before writing which enable versatility in e-beam patterns compared to the DOTF technique with same writing speed. By comparing the four different techniques, we evidence the limiting parameters for the writing speed. Wafer-scale fabrication of such arrays with 50 nm pitch allowed XPS analysis of a ferrocenylalkyl thiol self-assembled monolayer coated gold nanoarray.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...