Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 133: 17-29, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484391

RESUMO

Decisions to employ monitored natural attenuation (MNA) as a remediation strategy at contaminated field sites require a comprehensive characterization of the site-specific biodegradation processes. In the present study, compound-specific carbon and hydrogen isotope analysis (CSIA) was used to investigate intrinsic biodegradation of benzene and ethylbenzene in an aquifer with high levels of aromatic and aliphatic hydrocarbon contamination. Hydrochemical data and isotope fractionation analysis of sulfate and methane was used complementarily to elucidate microbial degradation processes over the course of a three year period, consisting of six sampling campaigns, in the industrial area of Weißandt-Gölzau (Saxony-Anhalt, Germany). Enrichment of (13)C and (2)H isotopes in the residual benzene and ethylbenzene pool downgradient from the pollution sources provided evidence of biodegradation of BTEX compounds at this site, targeting both compounds as the key contaminants of concern. The enrichment of heavy sulfur isotopes accompanied by decreasing sulfate concentrations and the accumulation of isotopically light methane suggested that sulfate-reducing and methanogenic processes are the major contributors to overall biodegradation in this aquifer. Along the contaminant plume, the oxidation of methane with δ(13)C(CH4) values of up to +17.5‰ was detected. This demonstrates that methane formed in the contaminant source can be transported along groundwater flow paths and be oxidized in areas with higher redox potentials, thereby competing directly with the pollutants for electron acceptors. Hydrochemical and isotope data was summarized in a conceptual model to assess whether MNA can be used as viable remediation strategy in Weißandt-Gölzau. The presented results demonstrate the benefits of combining different isotopic methods and hydrochemical approaches to evaluate the fate of organic pollutants in contaminated aquifers.


Assuntos
Derivados de Benzeno/análise , Benzeno/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Água Subterrânea , Modelos Teóricos , Oxirredução , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA