Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 89(17): 9077-9082, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28737889

RESUMO

This work shows the ability of resonance ionization mass spectrometry (RIMS) to determine 99gTc at the ultratrace level. The characterization of the prepared samples by X-ray photoelectron spectroscopy (XPS) and optimization of the RIMS setup for this purpose, as well as the application of the RIMS method to a soil sample, are presented in this article. 97Tc was used as a tracer isotope to determine the amount of 99gTc in a soil sample with RIMS. With 8.8 × 1010 atoms of 97Tc as the tracer, the concentration of 99gTc was found to be 1.5 × 109 atoms per gram of dried sample material, demonstrating the sensitivity of the method. Furthermore, it could be shown that the 97Tc solution contained 98Tc as well. This is the first time that 97,98,99gTc have been simultaneously measured with RIMS.

2.
Nature ; 533(7601): 47-51, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147026

RESUMO

Today's most precise time and frequency measurements are performed with optical atomic clocks. However, it has been proposed that they could potentially be outperformed by a nuclear clock, which employs a nuclear transition instead of an atomic shell transition. There is only one known nuclear state that could serve as a nuclear clock using currently available technology, namely, the isomeric first excited state of (229)Th (denoted (229m)Th). Here we report the direct detection of this nuclear state, which is further confirmation of the existence of the isomer and lays the foundation for precise studies of its decay parameters. On the basis of this direct detection, the isomeric energy is constrained to between 6.3 and 18.3 electronvolts, and the half-life is found to be longer than 60 seconds for (229m)Th(2+). More precise determinations appear to be within reach, and would pave the way to the development of a nuclear frequency standard.

3.
Angew Chem Int Ed Engl ; 54(45): 13452-6, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26501922

RESUMO

Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence.

4.
Anal Bioanal Chem ; 386(1): 109-18, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16847624

RESUMO

A combined setup for spatially resolved mass analysis of trace amounts of elements and macromolecules is presented. Using a MALDI-TOF mass spectrometer, a laser spectroscopic setup for resonant ionization of neutral atoms has been implemented. This allows for an efficient and selective detection of trace elements by means of resonance ionization mass spectrometry (RIMS). The instrumental scheme is described, and methodological developments are presented. In a first application pure, laser desorption/ionization with TOF-MS was used to measure mass distributions of cosmic nanodiamonds. For further applications regarding the spatially resolved ultra-trace analysis of elements in solid samples, an implanted target was used to characterize both laser desorption/ionization and laser desorption/resonance ionization for the detection of trace elements within. A perspective of the setup is given and future investigations are outlined.

5.
Anal Chem ; 75(24): 6769-74, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14670034

RESUMO

Capillary electrophoresis (CE) was coupled to ICPMS in order to combine the good performance of this separation technique with the high sensitivity of the ICPMS for the analysis of plutonium and neptunium oxidation states. The combination of a fused-silica capillary with a MicroMist AR 30-I-FM02 nebulizer and a Cinnabar small-volume cyclonic spray chamber yielded the best separation results. With this setup, it was possible to separate a model element mixture containing neptunium (NpO2(+)), uranium (UO2(2+)), lanthanum (La3+), and thorium (Th4+) in 1 M acetic acid. The same conditions were also suitable for the separation of various oxidation states of plutonium and neptunium in different aqueous samples. All separations were obtained within less than 15 min. A detection limit of 50 ppb identical with 2 x 10(-7) M (3-fold standard deviation of a blank) was achieved. To prove the negligible disturbance of the plutonium and neptunium redox equilibria during the CE separations, plutonium and neptunium speciation by CE-ICPMS in acidic solutions was compared with the results of UV/visible absorption spectroscopy and was found to be in good agreement. The CE-ICPMS system was also applied to study the reduction of Pu(VI) in a humic acid-containing groundwater at different pH values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...