Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(12): 121601, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394313

RESUMO

We present a closed formula for all Bern-Carrasco-Johansson (BCJ) numerators describing D-dimensional tree-level scattering amplitudes in a heavy-mass effective field theory with two massive particles and an arbitrary number of gluons. The corresponding gravitational amplitudes obtained via the double copy directly enter the computation of black-hole scattering and gravitational-wave emission. Our construction is based on finding a kinematic algebra for the numerators, which we relate to a quasishuffle Hopf algebra. The BCJ numerators thus obtained have a compact form and intriguing features: gauge invariance is manifest, locality is respected for massless exchange, and they contain poles corresponding to massive exchange. Counting the number of terms in a BCJ numerator for n-2 gluons gives the Fubini numbers F_{n-3}, reflecting the underlying quasishuffle Hopf algebra structure. Finally, by considering an appropriate factorization limit, the massive particles decouple, and we thus obtain a kinematic algebra and all tree-level BCJ numerators for D-dimensional pure Yang-Mills theory.

2.
Phys Rev Lett ; 119(16): 161601, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29099193

RESUMO

Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.

3.
Phys Rev Lett ; 115(14): 141602, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551805

RESUMO

It is known that the Yangian of PSU(2,2|4) is a symmetry of the tree-level S matrix of N=4 super Yang-Mills theory. On the other hand, the complete one-loop dilatation operator in the same theory commutes with the level-one Yangian generators only up to certain boundary terms found by Dolan, Nappi, and Witten. Using a result by Zwiebel, we show how the Yangian symmetry of the tree-level S matrix of N=4 super Yang-Mills theory implies precisely the Yangian invariance, up to boundary terms, of the one-loop dilatation operator.

4.
Phys Rev Lett ; 114(7): 071602, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25763951

RESUMO

We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation operator of N=4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the method and future directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA