Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573502

RESUMO

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Assuntos
Evolução Biológica , Imunidade Inata , Insetos , Mamíferos , Animais , Insetos/imunologia , Mamíferos/imunologia , Autofagia/imunologia
2.
Cancers (Basel) ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835434

RESUMO

Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.

3.
Biochem Eng J ; 186: 108537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35874089

RESUMO

Serological tests detect antibodies generated by infection or vaccination, and are indispensable tools along different phases of a pandemic, from early monitoring of pathogen spread up to seroepidemiological studies supporting immunization policies. This work discusses the development of an accurate and affordable COVID-19 antibody test, from production of a recombinant protein antigen up to test validation and economic analysis. We first developed a cost-effective, scalable technology to produce SARS-COV-2 spike protein and then used this antigen to develop an enzyme-linked immunosorbent assay (ELISA). A receiver operator characteristic (ROC) analysis allowed optimizing the cut-off and confirmed the high accuracy of the test: 98.6% specificity and 95% sensitivity for 11+ days after symptoms onset. We further showed that dried blood spots collected by finger pricking on simple test strips could replace conventional plasma/serum samples. A cost estimate was performed and revealed a final retail price in the range of one US dollar, reflecting the low cost of the ELISA test platform and the elimination of the need for venous blood sampling and refrigerated sample handling in clinical laboratories. The presented workflow can be completed in 4 months from first antigen expression to final test validation. It can be applied to other pathogens and in future pandemics, facilitating reliable and affordable seroepidemiological surveillance also in remote areas and in low-income countries.

5.
Front Cell Infect Microbiol ; 11: 668034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996638

RESUMO

The ability to sense and adequately respond to variable environmental conditions is central for cellular and organismal homeostasis. Eukaryotic cells are equipped with highly conserved stress-response mechanisms that support cellular function when homeostasis is compromised, promoting survival. Two such mechanisms - the unfolded protein response (UPR) and autophagy - are involved in the cellular response to perturbations in the endoplasmic reticulum, in calcium homeostasis, in cellular energy or redox status. Each of them operates through conserved signaling pathways to promote cellular adaptations that include re-programming transcription of genes and translation of new proteins and degradation of cellular components. In addition to their specific functions, it is becoming increasingly clear that these pathways intersect in many ways in different contexts of cellular stress. Viral infections are a major cause of cellular stress as many cellular functions are coopted to support viral replication. Both UPR and autophagy are induced upon infection with many different viruses with varying outcomes - in some instances controlling infection while in others supporting viral replication and infection. The role of UPR and autophagy in response to coronavirus infection has been a matter of debate in the last decade. It has been suggested that CoV exploit components of autophagy machinery and UPR to generate double-membrane vesicles where it establishes its replicative niche and to control the balance between cell death and survival during infection. Even though the molecular mechanisms are not fully elucidated, it is clear that UPR and autophagy are intimately associated during CoV infections. The current SARS-CoV-2 pandemic has brought renewed interest to this topic as several drugs known to modulate autophagy - including chloroquine, niclosamide, valinomycin, and spermine - were proposed as therapeutic options. Their efficacy is still debatable, highlighting the need to better understand the molecular interactions between CoV, UPR and autophagy.


Assuntos
COVID-19 , Autofagia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , SARS-CoV-2 , Resposta a Proteínas não Dobradas
6.
PLoS Pathog ; 16(7): e1008599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692767

RESUMO

Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.


Assuntos
Heme Oxigenase-1/metabolismo , Infecções por Protozoários/enzimologia , Animais , Humanos , Tolerância Imunológica/fisiologia
7.
Eur J Cell Biol ; 99(1): 151060, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31812279

RESUMO

Trypanosoma cruzi causes Chagas disease, a neglected illness that affects millions of people worldwide, especially in Latin America. The balance between biochemical pathways triggered by the parasite and host cells response will ultimately define the progression of a life-threatening disease, justifying the efforts to understand cellular mechanisms for infection restrain. In this interaction, parasite and host cells are affected by different physiological responses as autophagy modulation, which could be under intense cellular stress, such as nutrient deprivation, hormone depletion, or infection. Autophagy is a constitutive pathway that leads to degradation of macromolecules and cellular structures and may induce cell death. In Trypanosoma cruzi infection, the relevance of host autophagy is controversial regarding in vitro parasite intracellular life cycle. In the present study, we evaluated host cell autophagy during T. cruzi infection in phagocytic and non-professional phagocytic cells. We described that the presence of the parasite increased the number of LC3 puncta, a marker for autophagy, in cardiac cells and peritoneal macrophages in vitro. The induction of host autophagy decreased infection in macrophages in early and late time-periods. We suggest that starved phagocytic cells reduced internalization, also confirmed by inert particles and dead trypomastigotes. Whereas, in cardiac cells, starvation-induced autophagy decreased lipid droplets and infection in later time-point, by reducing parasite differentiation/proliferation. In ATG5 knockout MEF cells, we confirmed our hypothesis of autophagy machinery activation during parasite internalization, increasing infection. Our data suggest that host autophagy downregulates T. cruzi infection through impairing parasite intracellular life cycle, reducing the infection in primary culture cells.


Assuntos
Autofagia , Doença de Chagas/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Doença de Chagas/patologia , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Trypanosoma cruzi/isolamento & purificação , Trypanosoma cruzi/metabolismo
8.
Respir Physiol Neurobiol ; 259: 30-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997055

RESUMO

Acute lung injury (ALI) remains a major cause of mortality. In lipopolysaccharide (LPS)-stimulated macrophages, eugenol reduces cyclooxygenase-2 expression, NF-κB activation, and inflammatory mediators. We examined the anti-inflammatory and anti-oxidative action of eugenol in an in vivo model of LPS-induced lung injury. Lung mechanics and histology were analyzed in mice 24 h after LPS exposure, with and without eugenol treatment at different doses. Additional animals, submited to the same protocol, were treated with eugenol at 150 mg/kg to determine its effect on inflammatory cytokines (ELISA) and oxidative markers. LPS-induced lung functional and histological changes were significantly improved by eugenol, in a dose-dependent way. Furthermore, eugenol (150 mg/kg) was able to inhibit the release of inflammatory cytokines (TNF-α, IL-1ß and IL-6), NADPH oxidase activity, as well as antioxidant enzymes activity (superoxide dismutase, catalase and glutathione peroxidase). Finally, eugenol reduced LPS-induced protein oxidation. In conclusion, eugenol improved in vivo LPS-induced ALI through both anti-inflammatory and anti-oxidative effects, avoiding damage to lung structure.


Assuntos
Anti-Inflamatórios/uso terapêutico , Eugenol/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lesão Pulmonar/complicações , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/metabolismo , Pneumologia/métodos , Estatísticas não Paramétricas
9.
Front Immunol ; 9: 935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875765

RESUMO

Cellular responses to stress can be defined by the overwhelming number of changes that cells go through upon contact with and stressful conditions such as infection and modifications in nutritional status. One of the main cellular responses to stress is autophagy. Much progress has been made in the understanding of the mechanisms involved in the induction of autophagy during infection by intracellular bacteria. This review aims to discuss recent findings on the role of autophagy as a cellular response to intracellular bacterial pathogens such as, Streptococcus pyogenes, Mycobacterium tuberculosis, Shigella flexneri, Salmonella typhimurium, Listeria monocytogenes, and Legionella pneumophila, how the autophagic machinery senses these bacteria directly or indirectly (through the detection of bacteria-induced nutritional stress), and how some of these bacterial pathogens manage to escape from autophagy.


Assuntos
Autofagia , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Espaço Intracelular/microbiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos/metabolismo , Animais , Autofagossomos/imunologia , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Autofagia/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Fenômenos Fisiológicos Bacterianos/imunologia , Transporte Biológico , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Transdução de Sinais
10.
Autophagy ; 13(3): 625-626, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055290

RESUMO

Heme is an essential molecule expressed in many tissues where it plays key roles as the prosthetic group of several proteins involved in vital physiological and metabolic processes such as gas and electron transport. Structurally, heme is a tetrapyrrole ring containing an atom of iron (Fe) in its center. When released into the extracellular milieu, heme exerts several deleterious effects, which make it an important player in infectious and noninfectious hemolytic diseases where large amounts of free heme are observed such as malaria, dengue fever, ß-thalassemia, sickle cell disease and ischemia-reperfusion. Our recent work has uncovered an unappreciated cellular response triggered by heme or Fe, one of its degradation products, on macrophages, which is the formation of protein aggregates known as aggresome-like induced structres (ALIS). This response was shown to be fully dependent on ROS production and the activation of the transcription factor NFE2L2/NRF2. In addition, we have demonstrated that heme degradation by HMOX1/HO-1 (heme oxygenase 1) is required and that Fe is essential for the formation of ALIS, as heme analogs lacking the central atom of Fe are not able to induce these structures. ALIS formation is also observed in vivo, in a model of phenylhydrazine (PHZ)-induced hemolysis, indicating that it is an integral part of the host response to excessive free heme and that it may play a role in cellular homeostasis.


Assuntos
Heme/farmacologia , Ferro/farmacologia , Agregados Proteicos/efeitos dos fármacos , Animais , Humanos , Modelos Biológicos
11.
Proc Natl Acad Sci U S A ; 113(47): E7474-E7482, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821769

RESUMO

Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis.


Assuntos
Heme Oxigenase-1/metabolismo , Heme/metabolismo , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Ferritinas/metabolismo , Células HEK293 , Heme/química , Humanos , Camundongos , Estresse Oxidativo , Agregados Proteicos , Proteólise , Células RAW 264.7 , Proteína Sequestossoma-1/química , Ubiquitinação , Regulação para Cima
12.
Nat Commun ; 7: 13344, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882934

RESUMO

Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1ß in DM mice. IL-1ß causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1ß-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1ß axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1ß as an inflammatory connection between metabolic dysfunction and arrhythmias in DM.


Assuntos
Diabetes Mellitus Experimental/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Taquicardia Ventricular/imunologia , Receptor 2 Toll-Like/imunologia , Potenciais de Ação , Animais , Antirreumáticos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/imunologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caspase 1/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Inflamassomos/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Potássio/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Receptor 2 Toll-Like/genética
13.
Microbes Infect ; 18(3): 169-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774331

RESUMO

Despite a long battle that was started by Oswaldo Cruz more than a century ago, in 1903, Brazil still struggles to fight Aedes aegypti and Aedes albopictus, the mosquito vectors of dengue virus (DENV), Chikungynya virus (CHIKV) and Zika virus (ZIKV). Dengue fever has been a serious public health problem in Brazil for decades, with recurrent epidemic outbreaks occurring during summers. In 2015, until November, 1,534,932 possible cases were reported to the Ministry of Healthv. More recently, the less studied CHIKV and ZIKV have gained attention because of a dramatic increase in their incidence (around 400% for CHIKV) and the association of ZIKV infection with a 11-fold increase in the number of cases of microcephaly from 2014 to 2015 in northeast Brazil (1761 cases until December 2015). The symptoms of these three infections are very similar, which complicates the diagnosis. These include fever, headache, nausea, fatigue, and joint pain. In some cases, DENV infection develops into dengue hemorrhagic fever, a life threatening condition characterized by bleeding and decreases in platelet numbers in the blood. As for CHIKV, the most important complication is joint pain, which can last for months.


Assuntos
Aedes/virologia , Autofagia , Febre de Chikungunya/transmissão , Dengue/transmissão , Transmissão de Doença Infecciosa/prevenção & controle , Interações Hospedeiro-Patógeno , Infecção por Zika virus/transmissão , Animais , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Dengue/epidemiologia , Humanos , Incidência , Insetos Vetores , Infecção por Zika virus/epidemiologia
14.
Immunity ; 39(5): 858-73, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24238340

RESUMO

The peptidoglycan sensor Nod2 and the autophagy protein ATG16L1 have been linked to Crohn's disease (CD). Although Nod2 and the related sensor, Nod1, direct ATG16L1 to initiate anti-bacterial autophagy, whether ATG16L1 affects Nod-driven inflammation has not been examined. Here, we uncover an unanticipated autophagy-independent role for ATG16L1 in negatively regulating Nod-driven inflammatory responses. Knockdown of ATG16L1 expression, but not that of ATG5 or ATG9a, specifically enhanced Nod-driven cytokine production. In addition, autophagy-incompetent truncated forms of ATG16L1 regulated Nod-driven cytokine responses. Mechanistically, we demonstrated that ATG16L1 interfered with poly-ubiquitination of the Rip2 adaptor and recruitment of Rip2 into large signaling complexes. The CD-associated allele of ATG16L1 was impaired in its ability to regulate Nod-driven inflammatory responses. Overall, these results suggest that ATG16L1 is critical for Nod-dependent regulation of cytokine responses and that disruption of this Nod1- or Nod2-ATG16L1 signaling axis could contribute to the chronic inflammation associated with CD.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/fisiologia , Citocinas/biossíntese , Proteína Adaptadora de Sinalização NOD1/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Animais , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/patologia , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Humanos , Inflamação , Mucosa Intestinal/citologia , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/fisiologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Ubiquitinação
15.
Front Immunol ; 4: 361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24273538

RESUMO

Since they were first described as cytosolic sensors of microbial molecules a decade ago, the Nod-like receptors (NLRs) have been shown to have many different and important roles in various aspects of immune and inflammatory responses, ranging from antimicrobial mechanisms to control of adaptive responses. In this review, we focus on the interplay between NLRs and autophagy, an evolutionarily conserved mechanism that is crucial for homeostasis and has recently been shown to be involved in the protective response against infections. Furthermore, the association between mutations of NLRs as well as proteins that form the autophagic machinery and inflammatory diseases such as Crohn's disease highlight the importance of these proteins and their interactions in the regulation of inflammation.

16.
Proc Natl Acad Sci U S A ; 108(36): 14896-901, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21856952

RESUMO

Although a number of studies have examined the development of T-helper cell type 2 (Th2) immunity in different settings, the mechanisms underlying the initiation of this arm of adaptive immunity are not well understood. We exploited the fact that immunization with antigen plus either nucleotide-binding oligomerization domain-containing proteins 1 (Nod1) or 2 (Nod2) agonists drives Th2 induction to understand how these pattern-recognition receptors mediate the development of systemic Th2 immune responses. Here, we show in bone-marrow chimeric mice that Nod1 and Nod2 expression within the stromal compartment is necessary for priming of effector CD4(+) Th2 responses and specific IgG1 antibodies. In contrast, sensing of these ligands by dendritic cells was not sufficient to induce Th2 immunity, although these cells contribute to the response. Moreover, we determined that CD11c(+) cells were the critical antigen-presenting cells, whereas basophils and B cells did not affect the capacity of Nod ligands to induce CD4(+) Th2 effector function. Finally, we found that full Th2 induction upon Nod1 and Nod2 activation was dependent on both thymic stromal lymphopoietin production by the stromal cells and the up-regulation of the costimulatory molecule, OX40 ligand, on dendritic cells. This study provides in vivo evidence of how systemic Th2 immunity is induced in the context of Nod stimulation. Such understanding will influence the rational design of therapeutics that could reprogram the immune system during an active Th1-mediated disease, such as Crohn's disease.


Assuntos
Citocinas/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Células Th2/imunologia , Animais , Linfócitos B/imunologia , Basófilos/imunologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/terapia , Citocinas/genética , Células Dendríticas/imunologia , Imunidade Celular/fisiologia , Imunização , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Ligante OX40 , Estrutura Terciária de Proteína , Células Th1/imunologia , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/imunologia , Linfopoietina do Estroma do Timo
17.
J Biol Chem ; 285(43): 32844-32851, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20729208

RESUMO

Infectious diseases that cause hemolysis are among the most threatening human diseases, because of severity and/or global distribution. In these conditions, hemeproteins and heme are released, but whether heme affects the inflammatory response to microorganism molecules remains to be characterized. Here, we show that heme increased the lethality and cytokine secretion induced by LPS in vivo and enhanced the secretion of cytokines by macrophages stimulated with various agonists of innate immune receptors. Activation of nuclear factor κB (NF-κB) and MAPKs and the generation of reactive oxygen species were essential to the increase in cytokine production induced by heme plus LPS. This synergistic effect of heme and LPS was blocked by a selective inhibitor of spleen tyrosine kinase (Syk) and was abrogated in dendritic cells deficient in Syk. Moreover, inhibition of Syk and the downstream molecules PKC and PI3K reduced the reactive oxygen species generation by heme. Our results highlight a mechanism by which heme amplifies the secretion of cytokines triggered by microbial molecule activation and indicates possible pathways for therapeutic intervention during hemolytic infectious diseases.


Assuntos
Heme/imunologia , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/imunologia , Proteínas Tirosina Quinases/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Heme/agonistas , Heme/metabolismo , Heme/farmacologia , Humanos , Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/agonistas , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/genética , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk
18.
Autophagy ; 6(3): 409-11, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20200479

RESUMO

Autophagy is one of the main cellular degradation systems in eukaryotes, responsible for the elimination of long-lived proteins and damaged organelles. Besides its well-documented role as a housekeeping mechanism, autophagy has recently caught the attention of groups working in the fields of microbiology and immunology, especially those working in innate immunity. In particular, the highly specific segregation and degradation of intracellular bacteria by the autophagic machinery was a matter of great interest. However, it was still unclear how the autophagy machinery could target intracellular bacteria with such specificity. We have recently analyzed the role of the intracellular peptidoglycan (PG) receptors Nod1 and Nod2 as a link between intracellular bacterial sensing and the induction of autophagy. Our results demonstrated that Nod2 recruits the critical autophagy protein ATG16L1 to the plasma membrane during bacterial invasion and that cells expressing mutations in these proteins--two of the most important associated with Crohn disease--autophagy is defective upon infection or stimulation with the bacterial peptidoglycan fragment MDP. Thus, our findings put together two genes previously reported as independent risk factors for the development of Crohn disease and open a venue in the study of new therapies to cure the disease.


Assuntos
Autofagia/imunologia , Bactérias/metabolismo , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Transdução de Sinais/fisiologia , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Humanos , Camundongos , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética
19.
Gut Microbes ; 1(5): 307-315, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21327039

RESUMO

Autophagy is a homeostatic pathway that processes and recycles damaged organelles and other cytoplasmic contents. While studies have implicated autophagy in the immune response to infection, the understanding of how the autophagic machinery specifically targets intracellular pathogens has remained elusive. Two recent studies have uncovered an autophagy-mediated immune response to bacteria through their detection by Nod receptors. In particular, Nod1 and Nod2 recruit the autophagic protein ATG16L1 to the plasma membrane at the bacterial entry site to promote an autophagy-dependent elimination of bacteria. In addition, Nod2 and ATG16L1 synergize to initiate an adaptive immune response to bacterial invasion by enhancing major histocompatibility complex (MHC) class II antigen presentation. These findings link two Crohn disease-associated susceptibility genes and reveal that cells expressing the risk-associated variants of ATG16L1 are defective in autophagy-mediated bacterial handling and antigen presentation. This could lead to bacterial persistence and contribute to the pathogenesis of the disease.

20.
Nat Immunol ; 11(1): 55-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19898471

RESUMO

Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-kappaB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease-associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Bactérias/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/microbiologia , Membrana Celular/ultraestrutura , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...