Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729839

RESUMO

The human gastrointestinal microbiome encompasses bacteria, fungi, and viruses forming complex bionetworks which, for organismal health, must be in a state of homeostasis. An important homeostatic mechanism derives from microbial competition, which maintains the relative abundance of microbial species in a healthy balance. Microbes compete for nutrients and secrete metabolites that inhibit other microbes. Short-chain fatty acids (SCFAs) are one such class of metabolites made by gut bacteria to very high levels. SCFAs are metabolised by microbes and host cells and have multiple roles in regulating cell physiology. Here, we review the mechanisms by which SCFAs regulate the fungal gut commensal Candida albicans. We discuss SCFA's ability to inhibit fungal growth, limit invasive behaviours and modulate cell surface antigens recognised by immune cells. We review the mechanisms underlying these roles: regulation of gene expression, metabolism, signalling and SCFA-driven post-translational protein modifications by acylation, which contribute to changes in acylome dynamics of C. albicans with potentially large consequences for cell physiology. Given that the gut mycobiome is a reservoir for systemic disease and has also been implicated in inflammatory bowel disease, understanding the mechanisms by which bacterial metabolites, such as SCFAs, control the mycobiome might provide therapeutic avenues.

2.
mSphere ; 9(3): e0069623, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38376217

RESUMO

Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Camundongos , Cromatina/genética , Histonas/genética , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Antifúngicos , Homozigoto , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mamíferos
3.
STAR Protoc ; 4(4): 102737, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980567

RESUMO

Population-level dynamics of host-pathogen interactions can be characterized using quantitative live-cell imaging. Here, we present a protocol for infecting macrophages with the fungal pathogen Candida albicans in vitro and quantitative live-cell imaging of immune and pathogen responses. We describe steps for detailed image analysis and provide resources for quantification of phagocytosis and pathogen escape, as well as macrophage membrane permeabilization and viability. This protocol is modifiable for applications with a range of pathogens, immune cell types, and host-pathogen mechanisms. For complete details on the use and execution of this protocol, please refer to Olivier et al.1.


Assuntos
Candida albicans , Fagócitos , Candida albicans/metabolismo , Fagocitose , Macrófagos/metabolismo , Interações Hospedeiro-Patógeno
4.
mBio ; : e0260523, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929941

RESUMO

Microbes are exposed to nutritional and stress challenges in their environmental and host niches. To rise to these challenges, they regulate transcriptional programs that enable cellular adaptation. For instance, metabolite concentrations regulate post-translational modifications of chromatin, such as histone acetylation. In this way, metabolic signals are integrated with transcription. Over the last decade, several histone acylations have been discovered, including histone crotonylation. Their roles in microbial biology, environmental adaptation, and microbe-host interactions are incompletely defined. Here we show that the short-chain fatty acid crotonate, which is used to study histone crotonylation, changes cell morphology and immune interactions of Candida albicans. Crotonate reduces invasive hyphal morphogenesis of C. albicans within macrophages, thereby delaying macrophage killing and pathogen escape, as well as reducing inflammatory cytokine maturation. Crotonate's ability to reduce hyphal growth is environmentally contingent and pronounced within macrophages. Moreover, crotonate is a stronger hyphal inhibitor than butyrate under the conditions that we tested. Crotonate causes increased histone crotonylation in C. albicans under hyphal growth conditions and reduces transcription of hyphae-induced genes in a manner that involves the Nrg1 repressor pathway. Increasing histone acetylation by histone deacetylase inhibition partially rescues hyphal growth and gene transcription in the presence of crotonate. These results indicate that histone crotonylation might compete with acetylation in the regulation of hyphal morphogenesis. Based on our findings, we propose that diverse acylations of histones (and likely also non-histone proteins) enable C. albicans to respond to environmental signals, which in turn regulate its cell morphology and host-pathogen interactions.IMPORTANCEMacrophages curtail the proliferation of the pathogen Candida albicans within human body niches. Within macrophages, C. albicans adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis. Transcriptional programs regulate these metabolic and morphogenetic adaptations. Here we studied the roles of chromatin in these processes and implicate lysine crotonylation, a histone mark regulated by metabolism, in hyphal morphogenesis and macrophage interactions by C. albicans. We show that the short-chain fatty acid crotonate increases histone crotonylation, reduces hyphal formation within macrophages, and slows macrophage lysis and immune escape of C. albicans. Crotonate represses hyphal gene expression, and we propose that C. albicans uses diverse acylation marks to regulate its cell morphology in host environments. Hyphal formation is a virulence property of C. albicans. Therefore, a further importance of our study stems from identifying crotonate as a hyphal inhibitor.

5.
ACS Infect Dis ; 9(10): 1901-1917, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37756147

RESUMO

Fungal infections pose a significant and increasing threat to human health, but the current arsenal of antifungal drugs is inadequate. We screened the Medicines for Malaria Venture (MMV) Pathogen Box for new antifungal agents against three of the most critical Candida species (Candida albicans, Candida auris, and Candida glabrata). Of the 14 identified hit compounds, most were active against C. albicans and C. auris. We selected the pyrazolo-pyrimidine MMV022478 for chemical modifications to build structure-activity relationships and study their antifungal properties. Two analogues, 7a and 8g, with distinct fluorine substitutions, greatly improved the efficacy against C. auris and inhibited fungal replication inside immune cells. Additionally, analogue 7a had improved selectivity toward fungal killing compared to mammalian cytotoxicity. Evolution experiments generating MMV022478-resistant isolates revealed a change in morphology from oblong to round cells. Most notably, the resistant isolates blocked the uptake of the fluorescent dye rhodamine 6G and showed reduced susceptibility toward fluconazole, indicative of structural changes in the yeast cell surface. In summary, our study identified a promising antifungal compound with activity against high-priority fungal pathogens. Additionally, we demonstrated how structure-activity relationship studies of known and publicly available compounds can expand the repertoire of molecules with antifungal efficacy and reduced cytotoxicity to drive the development of novel therapeutics.


Assuntos
Antifúngicos , Candida auris , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Fluconazol/farmacologia , Candida albicans , Mamíferos
6.
Cell Rep ; 42(5): 112522, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204928

RESUMO

Metabolic adaptations regulate the response of macrophages to infection. The contributions of metabolism to macrophage interactions with the emerging fungal pathogen Candida auris are poorly understood. Here, we show that C. auris-infected macrophages undergo immunometabolic reprogramming and increase glycolysis but fail to activate a strong interleukin (IL)-1ß cytokine response or curb C. auris growth. Further analysis shows that C. auris relies on its own metabolic capacity to escape from macrophages and proliferate in vivo. Furthermore, C. auris kills macrophages by triggering host metabolic stress through glucose starvation. However, despite causing macrophage cell death, C. auris does not trigger robust activation of the NLRP3 inflammasome. Consequently, inflammasome-dependent responses remain low throughout infection. Collectively, our findings show that C. auris uses metabolic regulation to eliminate macrophages while remaining immunologically silent to ensure its own survival. Thus, our data suggest that host and pathogen metabolism could represent therapeutic targets for C. auris infections.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Candida albicans/metabolismo , Candida auris , Macrófagos/metabolismo , Interleucina-1beta/metabolismo
7.
PLoS Pathog ; 19(4): e1011338, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37075064

RESUMO

Fungal pathogens overcome antifungal drug therapy by classic resistance mechanisms, such as increased efflux or changes to the drug target. However, even when a fungal strain is susceptible, trailing or persistent microbial growth in the presence of an antifungal drug can contribute to therapeutic failure. This trailing growth is caused by adaptive physiological changes that enable the growth of a subpopulation of fungal cells in high drug concentrations, in what is described as drug tolerance. Mechanistically, antifungal drug tolerance is incompletely understood. Here we report that the transcriptional activator Rpn4 is important for drug tolerance in the human fungal pathogen Candida albicans. Deletion of RPN4 eliminates tolerance to the commonly used antifungal drug fluconazole. We defined the mechanism and show that Rpn4 controls fluconazole tolerance via two target pathways. First, Rpn4 activates proteasome gene expression, which enables sufficient proteasome capacity to overcome fluconazole-induced proteotoxicity and the accumulation of ubiquitinated proteins targeted for degradation. Consistently, inhibition of the proteasome with MG132 eliminates fluconazole tolerance and resistance, and phenocopies the rpn4Δ/Δ mutant for loss of tolerance. Second, Rpn4 is required for wild type expression of the genes required for the synthesis of the membrane lipid ergosterol. Our data indicates that this function of Rpn4 is required for mitigating the inhibition of ergosterol biosynthesis by fluconazole. Based on our findings, we propose that Rpn4 is a central hub for fluconazole tolerance in C. albicans by coupling the regulation of protein homeostasis (proteostasis) and lipid metabolism to overcome drug-induced proteotoxicity and membrane stress.


Assuntos
Antifúngicos , Complexo de Endopeptidases do Proteassoma , Humanos , Antifúngicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Fluconazol , Candida albicans/metabolismo , Tolerância a Medicamentos , Ergosterol , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
8.
Cell Rep ; 40(12): 111374, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130496

RESUMO

The egress of Candida hyphae from macrophages facilitates immune evasion, but it also alerts macrophages to infection and triggers inflammation. To better define the mechanisms, here we develop an imaging assay to directly and dynamically quantify hyphal escape and correlate it to macrophage responses. The assay reveals that Candida escapes by using two pore-forming proteins to permeabilize macrophage membranes: the fungal toxin candidalysin and Nlrp3 inflammasome-activated Gasdermin D. Candidalysin plays a major role in escape, with Nlrp3 and Gasdermin D-dependent and -independent contributions. The inactivation of Nlrp3 does not reduce hyphal escape, and we identify ETosis via macrophage extracellular trap formation as an additional pathway facilitating hyphal escape. Suppressing hyphal escape does not reduce fungal loads, but it does reduce inflammatory activation. Our findings explain how Candida escapes from macrophages by using three strategies: permeabilizing macrophage membranes via candidalysin and engaging two host cell death pathways, Gasdermin D-mediated pyroptosis and ETosis.


Assuntos
Candida albicans , Micotoxinas , Candida albicans/metabolismo , Morte Celular , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Hifas/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Micotoxinas/metabolismo , Micotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
9.
Microbiol Spectr ; 10(2): e0010022, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412372

RESUMO

Fungal infections are a global threat, but treatments are limited due to a paucity in antifungal drug targets and the emergence of drug-resistant fungi such as Candida auris. Metabolic adaptations enable microbial growth in nutrient-scarce host niches, and they further control immune responses to pathogens, thereby offering opportunities for therapeutic targeting. Because it is a relatively new pathogen, little is known about the metabolic requirements for C. auris growth and its adaptations to counter host defenses. Here, we establish that triggering metabolic dysfunction is a promising strategy against C. auris. Treatment with pyrvinium pamoate (PP) induced metabolic reprogramming and mitochondrial dysfunction evident in disrupted mitochondrial morphology and reduced tricarboxylic acid (TCA) cycle enzyme activity. PP also induced changes consistent with disrupted iron homeostasis. Nutrient supplementation experiments support the proposition that PP-induced metabolic dysfunction is driven by disrupted iron homeostasis, which compromises carbon and lipid metabolism and mitochondria. PP inhibited C. auris replication in macrophages, which is a relevant host niche for this yeast pathogen. We propose that PP causes a multipronged metabolic hit to C. auris: it restricts the micronutrient iron to potentiate nutritional immunity imposed by immune cells, and it further causes metabolic dysfunction that compromises the utilization of macronutrients, thereby curbing the metabolic plasticity needed for growth in host environments. Our study offers a new avenue for therapeutic development against drug-resistant C. auris, shows how complex metabolic dysfunction can be caused by a single compound triggering antifungal inhibition, and provides insights into the metabolic needs of C. auris in immune cell environments. IMPORTANCE Over the last decade, Candida auris has emerged as a human pathogen around the world causing life-threatening infections with wide-spread antifungal drug resistance, including pandrug resistance in some cases. In this study, we addressed the mechanism of action of the antiparasitic drug pyrvinium pamoate against C. auris and show how metabolism could be inhibited to curb C. auris proliferation. We show that pyrvinium pamoate triggers sweeping metabolic and mitochondrial changes and disrupts iron homeostasis. PP-induced metabolic dysfunction compromises the utilization of both micro- and macronutrients by C. auris and reduces its growth in vitro and in immune phagocytes. Our findings provide insights into the metabolic requirements for C. auris growth and define the mechanisms of action of pyrvinium pamoate against C. auris, demonstrating how this compound works by inhibiting the metabolic flexibility of the pathogen. As such, our study characterizes credible avenues for new antifungal approaches against C. auris.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida auris , Homeostase , Humanos , Ferro , Testes de Sensibilidade Microbiana , Mitocôndrias
10.
PLoS Genet ; 16(11): e1009071, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151931

RESUMO

Regulation of gene expression programs is crucial for the survival of microbial pathogens in host environments and for their ability to cause disease. Here we investigated the epigenetic regulator RSC (Remodels the Structure of Chromatin) in the most prevalent human fungal pathogen Candida albicans. Biochemical analysis showed that CaRSC comprises 13 subunits and contains two novel non-essential members, which we named Nri1 and Nri2 (Novel RSC Interactors) that are exclusive to the CTG clade of Saccharomycotina. Genetic analysis showed distinct essentiality of C. albicans RSC subunits compared to model fungal species suggesting functional and structural divergence of RSC functions in this fungal pathogen. Transcriptomic and proteomic profiling of a conditional mutant of the essential catalytic subunit gene STH1 demonstrated global roles of RSC in C. albicans biology, with the majority of growth-related processes affected, as well as mis-regulation of genes involved in morphotype switching, host-pathogen interaction and adaptive fitness. We further assessed the functions of non-essential CaRSC subunits, showing that the novel subunit Nri1 and the bromodomain subunit Rsc4 play roles in filamentation and stress responses; and also interacted at the genetic level to regulate cell viability. Consistent with these roles, Rsc4 is required for full virulence of C. albicans in the murine model of systemic infection. Taken together, our data builds the first comprehensive study of the composition and roles of RSC in C. albicans, showing both conserved and distinct features compared to model fungal systems. The study illuminates how C. albicans uses RSC-dependent transcriptional regulation to respond to environmental signals and drive survival fitness and virulence in mammals.


Assuntos
Candida albicans/genética , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Candida albicans/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Proteômica/métodos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
11.
Curr Opin Microbiol ; 58: 32-40, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781324

RESUMO

Immune cells, including macrophages and monocytes, remodel their metabolism and have specific nutritional needs when dealing with microbial pathogens. While we are just beginning to understand immunometabolism in fungal infections, emerging themes include recognition of fungal cell surface molecule driving metabolic remodelling to increase glycolysis, the critical role of glycolysis in the production of antifungal cytokines and fungicidal effector molecules, and the need for maintaining host glucose homeostasis to defeat fungal infections. A crosstalk between host and pathogen metabolic pathways determines the fate of immune cells and fungi when they interact. Thus, immunometabolic interactions offer potential for innovation in antifungal treatments in the future. For this to become a reality, we must decipher the mechanisms by which diverse fungal pathogens activate and manipulate immunometabolism.


Assuntos
Fungos/fisiologia , Micoses/imunologia , Micoses/metabolismo , Animais , Citocinas/imunologia , Fungos/genética , Glicólise , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Micoses/microbiologia
12.
mSphere ; 5(4)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817378

RESUMO

Neutropenia predisposes patients to life-threatening infection with Candida albicans, a commensal and opportunistic fungal pathogen. How phenotypic variation in C. albicans isolates dictates neutrophil responses is poorly understood. By using a panel of clinical C. albicans strains, here we report that the prototype strain SC5314 induces the most potent accumulation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) by human neutrophils of all tested isolates. ROS and NET accumulation positively correlated with the degree of hyphal formation by the isolates, the hypha being the fungal morphotype that promotes pathogenesis. However, there was no correlation of ROS and NET accumulation with fungal killing by neutrophils. Fungal killing was also not correlated with phagocytosis levels or oxidative stress susceptibility of the isolates. The bloodstream isolate P94015 cannot make hyphae and was previously shown to be hyperfit in the murine gut commensalism model. Our results show that P94015 displays poor phagocytosis by neutrophils, the least ROS and NET accumulation of all tested isolates, and resistance to neutrophil-mediated killing. Our data suggest that reduced susceptibility to neutrophils is likely to be independent from a previously described genetic mutation in P94015 that promotes commensalism. Reduced clearance by neutrophils could benefit commensal fitness of C. albicans and could also have promoted the virulence of P94015 in the human patient in the absence of hyphal morphogenesis. Collectively, our study provides new insights into neutrophil interactions with C. albicans and suggests that studying diverse isolates informs knowledge of the relevant aspects of this key immune interaction.IMPORTANCE Neutrophils are the key immune cell type for host defenses against infections with Candida albicansC. albicans strains isolated from patients display large phenotypic diversity, but how this diversity impacts host-pathogen interactions with neutrophils is incompletely defined. Here, we show that important neutrophil responses, such as accumulation of reactive oxygen species and neutrophil extracellular traps, as well as the levels of phagocytosis and killing of the pathogen, differ when comparing diverse C. albicans isolates. A bloodstream patient isolate previously described as more suited to commensalism than pathogenesis in animal models is relatively "silent" to neutrophils and resistant to killing. Our findings illuminate the relationships between fungal morphogenesis, neutrophil responses, and C. albicans survival. Our findings suggest that host phenotypes of a commensally adapted strain could be driven by resistance to immune clearance and indicate that we should extend our studies beyond the "prototype" strain SC5314 for deeper understanding of Candida-neutrophil interactions.


Assuntos
Candida albicans/imunologia , Candidemia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Hifas/crescimento & desenvolvimento , Neutrófilos/imunologia , Neutrófilos/microbiologia , Candida albicans/classificação , Armadilhas Extracelulares , Humanos , Estresse Oxidativo , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Virulência
13.
PLoS Pathog ; 16(8): e1008695, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750090

RESUMO

The NLRP3 inflammasome has emerged as a central immune regulator that senses virulence factors expressed by microbial pathogens for triggering inflammation. Inflammation can be harmful and therefore this response must be tightly controlled. The mechanisms by which immune cells, such as macrophages, discriminate benign from pathogenic microbes to control the NLRP3 inflammasome remain poorly defined. Here we used live cell imaging coupled with a compendium of diverse clinical isolates to define how macrophages respond and activate NLRP3 when faced with the human yeast commensal and pathogen Candida albicans. We show that metabolic competition by C. albicans, rather than virulence traits such as hyphal formation, activates NLRP3 in macrophages. Inflammasome activation is triggered by glucose starvation in macrophages, which occurs when fungal load increases sufficiently to outcompete macrophages for glucose. Consistently, reducing Candida's ability to compete for glucose and increasing glucose availability for macrophages tames inflammatory responses. We define the mechanistic requirements for glucose starvation-dependent inflammasome activation by Candida and show that it leads to inflammatory cytokine production, but it does not trigger pyroptotic macrophage death. Pyroptosis occurs only with some Candida isolates and only under specific experimental conditions, whereas inflammasome activation by glucose starvation is broadly relevant. In conclusion, macrophages use their metabolic status, specifically glucose metabolism, to sense fungal metabolic activity and activate NLRP3 when microbial load increases. Therefore, a major consequence of Candida-induced glucose starvation in macrophages is activation of inflammatory responses, with implications for understanding how metabolism modulates inflammation in fungal infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Glucose/deficiência , Interações Hospedeiro-Patógeno/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Células 3T3 BALB , Candida albicans/metabolismo , Candidíase/metabolismo , Candidíase/microbiologia , Caspase 1/fisiologia , Caspases Iniciadoras/fisiologia , Feminino , Hifas , Inflamação/metabolismo , Inflamação/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/fisiologia , Piroptose
14.
J Leukoc Biol ; 108(3): 967-981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32531864

RESUMO

Staphylococcus aureus causes necrotizing pneumonia by secreting toxins such as leukocidins that target front-line immune cells. The mechanism by which leukocidins kill innate immune cells and trigger inflammation during S. aureus lung infection, however, remains unresolved. Here, we explored human-induced pluripotent stem cell-derived macrophages (hiPSC-dMs) to study the interaction of the leukocidins Panton-Valentine leukocidin (PVL) and LukAB with lung macrophages, which are the initial leukocidin targets during S. aureus lung invasion. hiPSC-dMs were susceptible to the leukocidins PVL and LukAB and both leukocidins triggered NLPR3 inflammasome activation resulting in IL-1ß secretion. hiPSC-dM cell death after LukAB exposure, however, was only temporarily dependent of NLRP3, although NLRP3 triggered marked cell death after PVL treatment. CRISPR/Cas9-mediated deletion of the PVL receptor, C5aR1, protected hiPSC-dMs from PVL cytotoxicity, despite the expression of other leukocidin receptors, such as CD45. PVL-deficient S. aureus had reduced ability to induce lung IL-1ß levels in human C5aR1 knock-in mice. Unexpectedly, inhibiting NLRP3 activity resulted in increased wild-type S. aureus lung burdens. Our findings suggest that NLRP3 induces macrophage death and IL-1ß secretion after PVL exposure and controls S. aureus lung burdens.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Exotoxinas/antagonistas & inibidores , Células-Tronco Pluripotentes Induzidas/citologia , Leucocidinas/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Receptor da Anafilatoxina C5a/efeitos dos fármacos , Staphylococcus aureus , Animais , Antígeno CD11b/imunologia , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Exotoxinas/deficiência , Técnicas de Introdução de Genes , Humanos , Interleucina-1beta/metabolismo , Antígenos Comuns de Leucócito/fisiologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Fragmentos de Peptídeos/imunologia , Pneumonia Estafilocócica/imunologia , Subunidades Proteicas , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/fisiologia , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/fisiologia
15.
Cell Rep ; 31(3): 107528, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320659

RESUMO

Identification of multiple histone acylations diversifies transcriptional control by metabolism, but their functions are incompletely defined. Here we report evidence of histone crotonylation in the human fungal pathogen Candida albicans. We define the enzymes that regulate crotonylation and show its dynamic control by environmental signals: carbon sources, the short-chain fatty acids butyrate and crotonate, and cell wall stress. Crotonate regulates stress-responsive transcription and rescues C. albicans from cell wall stress, indicating broad impact on cell biology. The YEATS domain crotonylation readers Taf14 and Yaf9 are required for C. albicans virulence, and Taf14 controls gene expression, stress resistance, and invasive growth via its chromatin reader function. Blocking the Taf14 C terminus with a tag reduced virulence, suggesting that inhibiting Taf14 interactions with chromatin regulators impairs function. Our findings shed light on the regulation of histone crotonylation and the functions of the YEATS proteins in eukaryotic pathogen biology and fungal infections.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Animais , Candida albicans/patogenicidade , Cromatina/metabolismo , Crotonatos/metabolismo , Feminino , Histona Acetiltransferases/metabolismo , Humanos , Camundongos , Domínios Proteicos , Fator de Transcrição TFIID , Virulência
16.
Curr Top Microbiol Immunol ; 425: 277-296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31807895

RESUMO

Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.


Assuntos
Parede Celular , Fungos/citologia , Fungos/patogenicidade , Mitocôndrias/metabolismo , Micoses/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico
17.
ACS Appl Mater Interfaces ; 11(38): 34676-34687, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483991

RESUMO

Nanoparticle-cell interactions between silica nanomaterials and mammalian cells have been investigated extensively in the context of drug delivery, diagnostics, and imaging. While there are also opportunities for applications in infectious disease, the interactions of silica nanoparticles with pathogenic microbes are relatively underexplored. To bridge this knowledge gap, here, we investigate the effects of organosilica nanoparticles of different sizes, concentrations, and surface coatings on surface association and viability of the major human fungal pathogen Candida albicans. We show that uncoated and PEGylated organosilica nanoparticles associate with C. albicans in a size and concentration-dependent manner, but on their own, do not elicit antifungal activity. The particles are also shown to associate with human white blood cells, in a similar trend as observed with C. albicans, and remain noncytotoxic toward neutrophils. Smaller particles are shown to have low association with C. albicans in comparison to other sized particles and their association with blood cells was also observed to be minimal. We further demonstrate that by chemically immobilizing the clinically important echinocandin class antifungal drug, caspofungin, to PEGylated nanoparticles, the cell-material interaction changes from benign to antifungal, inhibiting C. albicans growth when provided in high local concentration on a surface. Our study provides the foundation for defining how organosilica particles could be tailored for clinical applications against C. albicans. Possible future developments include designing biomaterials that could detect, prevent, or treat bloodstream C. albicans infections, which at present have very high patient mortality.


Assuntos
Antifúngicos , Candida albicans/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis , Nanopartículas , Neutrófilos/metabolismo , Compostos de Organossilício , Polietilenoglicóis , Antifúngicos/química , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Candidíase/patologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
18.
EMBO Rep ; 20(7): e47995, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267653

RESUMO

Antimicrobial drug resistance is threatening to take us to the "pre-antibiotic era", where people are dying from preventable and treatable diseases and the risk of hospital-associated infections compromises the success of surgery and cancer treatments. Development of new antibiotics is slow, and alternative approaches to control infections have emerged based on insights into metabolic pathways in host-microbe interactions. Central carbon metabolism of immune cells is pivotal in mounting an effective response to invading pathogens, not only to meet energy requirements, but to directly activate antimicrobial responses. Microbes are not passive players here-they remodel their metabolism to survive and grow in host environments. Sometimes, microbes might even benefit from the metabolic reprogramming of immune cells, and pathogens such as Candida albicans, Salmonella Typhimurium and Staphylococcus aureus can compete with activated host cells for sugars that are needed for essential metabolic pathways linked to inflammatory processes. Here, we discuss how metabolic interactions between innate immune cells and microbes determine their survival during infection, and ways in which metabolism could be manipulated as a therapeutic strategy.


Assuntos
Doenças Transmissíveis/imunologia , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Animais , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/microbiologia , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos/microbiologia , Metaboloma
19.
Curr Genet ; 65(4): 837-845, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30783741

RESUMO

Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albicans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1's action in pathogenic fungi and the potential and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal pathogenesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.


Assuntos
Fungos/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Quinazolinonas/farmacologia , Apoptose/genética , Complexo I de Transporte de Elétrons/genética , Fungos/patogenicidade , GTP Fosfo-Hidrolases/genética , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo
20.
Cell Rep ; 25(8): 2244-2258.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463019

RESUMO

The yeast Candida albicans colonizes several sites in the human body and responds to metabolic signals in commensal and pathogenic states. The yeast-to-hyphae transition correlates with virulence, but how metabolic status is integrated with this transition is incompletely understood. We used the putative mitochondrial fission inhibitor mdivi-1 to probe the crosstalk between hyphal signaling and metabolism. Mdivi-1 repressed C. albicans hyphal morphogenesis, but the mechanism was independent of its presumed target, the mitochondrial fission GTPase Dnm1. Instead, mdivi-1 triggered extensive metabolic reprogramming, consistent with metabolic stress, and reduced endogenous nitric oxide (NO) levels. Limiting endogenous NO stabilized the transcriptional repressor Nrg1 and inhibited the yeast-to-hyphae transition. We establish a role for endogenous NO signaling in C. albicans hyphal morphogenesis and suggest that NO regulates a metabolic checkpoint for hyphal growth. Furthermore, identifying NO signaling as an mdivi-1 target could inform its therapeutic applications in human diseases.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Caenorhabditis elegans , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Quinazolinonas/farmacologia , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...