Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleus ; 11(1): 178-193, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32762441

RESUMO

XENOPUS: egg extracts are a powerful in vitro tool for studying complex biological processes, including nuclear reconstitution, nuclear membrane and pore assembly, and spindle assembly. Extracts have been further used to demonstrate a moonlighting regulatory role for nuclear import receptors or importins on these cell cycle assembly events. Here we show that exportins can also play a role in these events. Addition of Crm1, Exportin-t, or Exportin-5 decreased nuclear pore assembly in vitro. RanQ69L-GTP, a constitutively active form of RanGTP, ameliorated inhibition. Both Crm1 and Exportin-t inhibited fusion of nuclear membranes, again counteracted by RanQ69L-GTP. In mitotic extracts, Crm1 and Exportin-t negatively impacted spindle assembly. Pulldowns from the extracts using Crm1- or Exportin-t-beads revealed nucleoporins known to be essential for both nuclear pore and spindle assembly, with RanQ69L-GTP decreasing a subset of these target interactions. This study suggests a model where exportins, like importins, can regulate major mitotic assembly events.


Assuntos
Carioferinas/metabolismo , Fusão de Membrana , Mitose , Poro Nuclear/metabolismo , Fuso Acromático/metabolismo , Animais , Sistema Livre de Células/metabolismo , Humanos , Carioferinas/genética , Poro Nuclear/genética , Fuso Acromático/genética , Xenopus laevis
3.
Curr Opin Cell Biol ; 34: 122-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26196321

RESUMO

The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator ­ the γ-TuRC complex ­ and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.

4.
Curr Opin Cell Biol ; 35: 78-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982429

RESUMO

The unexpected repurposing of nuclear transport proteins from their function in interphase to an equally vital and very different set of functions in mitosis was very surprising. The multi-talented cast when first revealed included the import receptors, importin alpha and beta, the small regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) The cast of nuclear import receptors playing a role in mitotic spindle regulation has expanded: both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key microtubule nucleator - the γ-TuRC complex - and the exportin Crm1 to the mitotic kinetochores of humans. Together they nucleate microtubule formation from the kinetochores toward the centrosomes. (c) New research finds that the original importin beta/RanGTP team have been further co-opted by evolution to help regulate other cellular and organismal activities, ranging from the actual positioning of the spindle within the cell perimeter, to regulation of a newly discovered spindle microtubule branching activity, to regulation of the interaction of microtubule structures with specific actin structures. (d) Lastly, because of the multitudinous roles of karyopherins throughout the cell cycle, a recent large push toward testing their potential as chemotherapeutic targets has begun to yield burgeoning progress in the clinic.


Assuntos
Mitose , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Proteína ran de Ligação ao GTP/metabolismo
5.
Nucleus ; 6(1): 40-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25602437

RESUMO

Nuclear pore complexes (NPCs) form the gateway to the nucleus, mediating virtually all nucleocytoplasmic trafficking. Assembly of a nuclear pore complex requires the organization of many soluble sub-complexes into a final massive structure embedded in the nuclear envelope. By use of a LacI/LacO reporter system, we were able to assess nucleoporin (Nup) interactions, show that they occur with a high level of specificity, and identify nucleoporins sufficient for initiation of the complex process of NPC assembly in vivo. Eleven nucleoporins from different sub-complexes were fused to LacI-CFP and transfected separately into a human cell line containing a stably integrated LacO DNA array. The LacI-Nup fusion proteins, which bound to the array, were examined for their ability to recruit endogenous nucleoporins to the intranuclear LacO site. Many could recruit nucleoporins of the same sub-complex and a number could also recruit other sub-complexes. Strikingly, Nup133 and Nup107 of the Nup107/160 subcomplex and Nup153 and Nup50 of the nuclear pore basket recruited a near full complement of nucleoporins to the LacO array. Furthermore, Nup133 and Nup153 efficiently targeted the LacO array to the nuclear periphery. Our data support a hierarchical, seeded assembly pathway and identify Nup133 and Nup153 as effective "seeds" for NPC assembly. In addition, we show that this system can be applied to functional studies of individual nucleoporin domains as well as to specific nucleoporin disease mutations. We find that the R391H cardiac arrhythmia/sudden death mutation of Nup155 prevents both its subcomplex assembly and nuclear rim targeting of the LacO array.


Assuntos
Cromatina/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Arritmias Cardíacas/genética , Linhagem Celular Tumoral , Humanos , Repressores Lac/genética , Mutação , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estrutura Terciária de Proteína
6.
Mol Cell Biol ; 33(8): 1476-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23382076

RESUMO

In Saccharomyces cerevisiae, G1/S transcription factors MBF and SBF regulate a large family of genes important for entry to the cell cycle and DNA replication and repair. Their regulation is crucial for cell viability, and it is conserved throughout evolution. MBF and SBF consist of a common component, Swi6, and a DNA-specific binding protein, Mbp1 and Swi4, respectively. Transcriptional repressors bind to and regulate the activity of both transcription factors. Whi5 binds to SBF and represses its activity at the beginning of the G1 phase to prevent early activation. Nrm1 binds to MBF to repress transcription as cells progress through S phase. Here, we describe a protein motif, the GTB motif (for G1/S transcription factor binding), in Nrm1 and Whi5 that is required to bind to the transcription factors. We also identify a region of the carboxy terminus of Swi6 that is required for Nrm1 and Whi5 binding to their target transcription factors and show that mutation of this region overrides the repression of MBF- and SBF-regulated genes by Nrm1 and Whi5. Finally, we show that the GTB motif is the core of a functional module that is necessary and sufficient for targeting of the transcription factors by their cognate repressors.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química
8.
EMBO J ; 31(7): 1811-22, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22333915

RESUMO

MBF and SBF transcription factors regulate a large family of coordinately expressed G1/S genes required for early cell-cycle functions including DNA replication and repair. SBF is inactivated upon S-phase entry by Clb/CDK whereas MBF targets are repressed by the co-repressor, Nrm1. Using genome-wide expression analysis of cells treated with methyl methane sulfonate (MMS), hydroxyurea (HU) or camptothecin (CPT), we show that genotoxic stress during S phase specifically induces MBF-regulated genes. This occurs via direct phosphorylation of Nrm1 by Rad53, the effector checkpoint kinase, which prevents its binding to MBF target promoters. We conclude that MBF-regulated genes are distinguished from SBF-regulated genes by their sensitivity to activation by the S-phase checkpoint, thereby, providing an effective mechanism for enhancing DNA replication and repair and promoting genome stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA , Fase G1/genética , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Biol Chem ; 285(34): 26431-40, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20538605

RESUMO

In eukaryotic cells a surveillance mechanism, the S phase checkpoint, detects and responds to DNA damage and replication stress, protecting DNA replication and arresting cell cycle progression. We show here that the S phase cyclins Clb5 and Clb6 are regulated in response to genotoxic stress in the budding yeast Saccharomyces cerevisiae. Clb5 and Clb6 are responsible for the activation of the specific Cdc28 cyclin-dependent kinase activity that drives the onset and progression of the S phase. Intriguingly, Clb5 and Clb6 are regulated by different mechanisms. Thus, the presence of Clb6, which is eliminated early in an unperturbed S phase, is stabilized when replication is compromised by replication stress or DNA damage. Such stabilization depends on the checkpoint kinases Mec1 and Rad53. The stabilization of Clb6 levels is a dynamic process that requires continued de novo protein synthesis, because the cyclin remains subject to degradation. It also requires the activity of the G(1) transcription factor Mlu1 cell cycle box-binding factor (MBF) in the S phase, whereas Dun1, the checkpoint kinase characteristically responsible for the transcriptional response to genotoxic stress, is dispensable in this case. On the other hand, two subpopulations of endogenous Clb5 can be distinguished according to turnover in an unperturbed S phase. In the presence of replication stress, the unstable Clb5 pool is stabilized, and such stabilization requires neither MBF transcriptional activity nor de novo protein synthesis.


Assuntos
Ciclo Celular , Ciclina B/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular , Quinase do Ponto de Checagem 2 , Replicação do DNA , Proteínas Serina-Treonina Quinases , Estabilidade Proteica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Fatores de Transcrição/genética
10.
J Biol Chem ; 283(25): 17123-30, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18441009

RESUMO

The DNA damage checkpoint regulates DNA replication and arrests cell cycle progression in response to genotoxic stress. In Saccharomyces cerevisiae, the protein kinase Rad53 plays a central role in preventing genomic instability and maintaining viability in the presence of replication stress and DNA damage. Activation of Rad53 depends on phosphorylation by the upstream kinase Mec1, followed by autophosphorylation on multiple residues. Also critical for cell viability, the molecular mechanism of Rad53 deactivation remains incompletely understood. Rad53 dephosphorylation after repair of a persistent double strand break in G(2)/M has been shown to depend on the presence of the PP2C-type phosphatases Ptc2 and Ptc3. More recently, the PP2A-like protein phosphatase Pph3 has been shown to be required to dephosphorylate Rad53 after DNA methylation damage in S phase. However, we show here that Ptc2/3 are dispensable for Rad53 deactivation after replication stress or DNA methylation damage. Pph3 is also dispensable for the deactivation of Rad53 after replication stress. In addition, Rad53 kinase activity is still deactivated in pph3 null cells after DNA methylation damage, despite persistent Rad53 hyperphosphorylation. Finally, a strain in which the three phosphatases are deleted shows a severe defect in Rad53 kinase deactivation after DNA methylation damage but not after replication stress. In all, our results suggest that distinct phosphatases operate to return Rad53 to its basal state after different genotoxic stresses and that a yet unidentified phosphatase may be responsible for the deactivation of Rad53 after replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Quinase do Ponto de Checagem 2 , Metilação de DNA , Replicação do DNA , Mutação , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteína Fosfatase 2 , Proteína Fosfatase 2C , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...