Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 16134, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382153

RESUMO

Comparative analysis of the expanding genomic resources for scleractinian corals may provide insights into the evolution of these organisms, with implications for their continued persistence under global climate change. Here, we sequenced and annotated the genome of Pocillopora damicornis, one of the most abundant and widespread corals in the world. We compared this genome, based on protein-coding gene orthology, with other publicly available coral genomes (Cnidaria, Anthozoa, Scleractinia), as well as genomes from other anthozoan groups (Actiniaria, Corallimorpharia), and two basal metazoan outgroup phlya (Porifera, Ctenophora). We found that 46.6% of P. damicornis genes had orthologs in all other scleractinians, defining a coral 'core' genome enriched in basic housekeeping functions. Of these core genes, 3.7% were unique to scleractinians and were enriched in immune functionality, suggesting an important role of the immune system in coral evolution. Genes occurring only in P. damicornis were enriched in cellular signaling and stress response pathways, and we found similar immune-related gene family expansions in each coral species, indicating that immune system diversification may be a prominent feature of scleractinian coral evolution at multiple taxonomic levels. Diversification of the immune gene repertoire may underlie scleractinian adaptations to symbiosis, pathogen interactions, and environmental stress.


Assuntos
Antozoários/genética , Antozoários/imunologia , Evolução Biológica , Genoma , Sistema Imunitário/metabolismo , Animais , Ontologia Genética , Variação Genética , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Especificidade da Espécie
2.
Cell Death Discov ; 2: 16058, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551546

RESUMO

The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis.

3.
Proc Biol Sci ; 279(1745): 4106-14, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22896649

RESUMO

Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.


Assuntos
Antozoários/imunologia , Conservação dos Recursos Naturais , Imunidade Inata , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Ecossistema , Melaninas/biossíntese , Transdução de Sinais/imunologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...