Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 93(2): 79-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29142019

RESUMO

Use of [18F]FDG-positron emission tomography (PET) in clinical breast cancer (BC) imaging is limited mainly by insufficient expression levels of facilitative glucose transporter (GLUT)1 in up to 50% of all patients. Fructose-specific facilitative hexose transporter GLUT5 represents an alternative biomarker for PET imaging of hexose metabolism in BC. The goal of the present study was to compare the uptake characteristics of selected hexose-based PET radiotracers in murine BC model EMT6. Uptake of 1-deoxy-1-[18F]fluoro-d-fructose (1-[18F]FDF), 6-deoxy-6-[18F]fluoro-d-fructose (6-[18F]FDF), 1-deoxy-1-[18F]fluoro-2,5-anhydro-mannitol (1-[18F]FDAM), 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), and 6-deoxy-6-[18F]fluoro-d-glucose (6-[18F]FDG) was studied in EMT6 cells, tumors, and muscle and correlated to GLUT1 and GLUT5 expression levels. Fructose-derivative 6-[18F]FDF revealed greater tumor uptake than did structural analog 1-[18F]FDF, whereas 1-[18F]FDAM with locked anomeric configuration showed similar low tumor uptake to that of 1-[18F]FDF. Glucose-derivative 6-[18F]FDG reached maximum tumor uptake at 20 minutes, with no further accumulation over time. Uptake of 2-[18F]FDG was greatest and continuously increasing owing to metabolic trapping through phosphorylation by hexokinase II. In EMT6 tumors, GLUT5 mRNA expression was 20,000-fold lower compared with GLUT1. Whereas the latter was much greater in tumor than in muscle tissue (GLUT1 50:1), the opposite was found for GLUT5 mRNA expression (GLUT5 1:6). GLUT5 protein levels were higher in tumor versus muscle tissue as determined by Western blot and immunohistochemistry. Our data suggest that tumor uptake of fructose metabolism-targeting radiotracers 1-[18F]FDF, 6-[18F]FDF, and 1-[18F]FDAM does not correlate with GLUT5 mRNA levels but is linked to GLUT5 protein levels. In conclusion, our results highlight the importance of detailed biochemical studies on GLUT protein expression levels in combination with PET imaging studies for functional characterization of GLUTs in BC.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/metabolismo , Frutose/metabolismo , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 5 , Camundongos Endogâmicos BALB C , Músculos/metabolismo , RNA Mensageiro/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Análise Espectral/métodos
2.
Org Biomol Chem ; 13(39): 10073, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26375593

RESUMO

Correction for 'New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5' by Olivier-Mohamad Soueidan, et al., Org. Biomol. Chem., 2015, 13, 6511-6521.

3.
Org Biomol Chem ; 13(23): 6511-21, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25975431

RESUMO

Facilitated hexose transporters (GLUTs) mediate the transport of hexoses and other substrates across the membranes of numerous cell types, and while some are expressed ubiquitously (e.g., GLUT1), others are more tissue specific (e.g., GLUT5). These properties have been exploited for the imaging of cancer cells by the use of hexose based probes, including fluorinated hexose derivatives for use with positron emission tomography (PET). However, design of new probes has been hampered by a limited understanding of how GLUT transporters interact with their substrates at the molecular level. Two fluorinated fructose surrogates designed for uptake by the GLUT5 transporter are described here: 3-deoxy-3-fluoro-D-fructose (3-FDF) and 1-deoxy-1-fluoro-2,5-anhydromannitol (1-FDAM). Synthesis (both cold and radiolabeled) and in vitro analysis of their transport characteristics in two breast cancer cell lines (EMT-6 and MCF-7) expressing GLUT5 are detailed. Both analogues are readily taken up into both cancer cell lines, with uptake mediated primarily by GLUT5. They also have low IC50 values, indicating a high affinity for the transporter, suggesting that the uptake of these probes would be unaffected by endogenously circulating fructose. Selective uptake by GLUT5 was also demonstrated in Xenopus oocytes. Finally, these results are the first demonstration that a hexose existing predominantly in the pyranose ring structure (3-FDF) is transported by GLUT5, strongly suggesting that this transporter can handle both furanose and pyranose forms of fructose.


Assuntos
Frutose/análogos & derivados , Transportador de Glucose Tipo 5/análise , Sondas Moleculares/química , Animais , Transporte Biológico/efeitos dos fármacos , Radioisótopos de Carbono/metabolismo , Radioisótopos de Carbono/farmacocinética , Linhagem Celular Tumoral , Técnicas de Química Sintética , Citocalasina B/farmacologia , Feminino , Frutose/química , Frutose/metabolismo , Frutose/farmacologia , Transportador de Glucose Tipo 5/metabolismo , Humanos , Concentração Inibidora 50 , Células MCF-7/efeitos dos fármacos , Células MCF-7/metabolismo , Técnicas de Sonda Molecular , Sondas Moleculares/síntese química , Sondas Moleculares/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Xenopus
4.
Nucl Med Biol ; 38(4): 461-75, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21531283

RESUMO

INTRODUCTION: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers. METHODS: Uptake of 6-[(18)F]FDF was studied in murine EMT-6 and human MCF-7 breast cancer cells over 60 min and compared to [(18)F]FDG. Biodistribution of 6-[(18)F]FDF was determined in BALB/c mice. Tumor uptake was studied with dynamic small animal PET in EMT-6 tumor-bearing BALB/c mice and human xenograft MCF-7 tumor-bearing NIH-III mice in comparison to [(18)F]FDG. 6-[(18)F]FDF metabolism was investigated in mouse blood and urine. RESULTS: 6-[(18)F]FDF is taken up by EMT-6 and MCF-7 breast tumor cells independent of extracellular glucose levels but dependent on the extracellular concentration of fructose. After 60 min, 30±4% (n=9) and 12±1% (n=7) ID/mg protein 6-[(18)F]FDF was found in EMT-6 and MCF-7 cells, respectively. 6-deoxy-6-fluoro-d-fructose had a 10-fold higher potency than fructose to inhibit 6-[(18)F]FDF uptake into EMT-6 cells. Biodistribution in normal mice revealed radioactivity uptake in bone and brain. Radioactivity was accumulated in EMT-6 tumors reaching 3.65±0.30% ID/g (n=3) at 5 min post injection and decreasing to 1.75±0.03% ID/g (n=3) at 120 min post injection. Dynamic small animal PET showed significantly lower radioactivity uptake after 15 min post injection in MCF-7 tumors [standard uptake value (SUV)=0.76±0.05; n=3] compared to EMT-6 tumors (SUV=1.23±0.09; n=3). Interestingly, [(18)F]FDG uptake was significantly different in MCF-7 tumors (SUV(15 min) 0.74±0.12 to SUV(120 min) 0.80±0.15; n=3) versus EMT-6 tumors (SUV(15 min) 1.01±0.33 to SUV(120 min) 1.80±0.25; n=3). 6-[(18)F]FDF was shown to be a substrate for recombinant human ketohexokinase, and it was metabolized rapidly in vivo. CONCLUSION: Based on the GLUT5 specific transport and phosphorylation by ketohexokinase, 6-[(18)F]FDF may represent a novel radiotracer for PET imaging of GLUT5 and ketohexokinase-expressing tumors.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Desoxiaçúcares , Radioisótopos de Flúor , Frutose/análogos & derivados , Transportador de Glucose Tipo 5/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Desoxiaçúcares/síntese química , Desoxiaçúcares/metabolismo , Desoxiaçúcares/farmacocinética , Feminino , Frutoquinases/metabolismo , Frutose/síntese química , Frutose/metabolismo , Frutose/farmacocinética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Traçadores Radioativos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética
5.
Bioorg Med Chem ; 17(15): 5488-95, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19586773

RESUMO

FDG-based imaging with positron emission tomography (PET) has been widely used in the detection of cancer, but has not reached its full potential. In breast cancer, the glucose/fructose transporter GLUT2 and the fructose transporter GLUT5 are known to be overexpressed in transformed tissues, implicating that a fructose-based analogue would be a useful target for the improved imaging of breast cancer. We have successfully synthesized the fluorinated fructose compound, 6-deoxy-6-fluoro-D-fructose (6FDF) and examined its potential for transport and accumulation in breast cancer cells. Expression analysis of GLUT isoforms was performed on two GLUT5 expressing breast cancer cell lines using western blotting and immunocytochemistry. Uptake and inhibition studies were undertaken using [14C]-labelled hexoses. Transport inhibition studies showed dose dependent inhibition of fructose transport in both cell lines by the newly synthesized 6-deoxy-6-fluoro-D-fructose (6FDF). Also, near linear uptake over time of [14C]-labelled 6FDF was observed in both cell lines. It appears that 6FDF may have great promise for use in in vivo PET imaging of breast cancer. Ongoing work will confirm the efficacy of this compound in imaging in mouse models.


Assuntos
Adenocarcinoma/diagnóstico , Neoplasias da Mama/diagnóstico , Desoxiaçúcares/síntese química , Desoxiaçúcares/farmacologia , Frutose/análogos & derivados , Transportador de Glucose Tipo 5/análise , Transportador de Glucose Tipo 5/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Adenocarcinoma/metabolismo , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Feminino , Frutose/síntese química , Frutose/metabolismo , Frutose/farmacologia , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...