Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 365: 491-506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030083

RESUMO

Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.


Assuntos
Nanopartículas , Polietilenoglicóis , Camundongos , Animais , Polietilenoglicóis/química , Distribuição Tecidual , Polímeros/química , Poliésteres/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
2.
J Pharm Sci ; 112(3): 844-858, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372229

RESUMO

The recent emergence of drug-dendrimer conjugates within pharmaceutical industry research and development introduces a range of challenges for analytical and measurement science. These molecules are very high molecular weight (100-200kDa) with a significant degree of structural complexity. The characteristics and quality attributes that require understanding and definition, and impact efficacy and safety, are diverse. They relate to the intact conjugate, the various building blocks of these complex systems and the level of the free and bound active pharmaceutical ingredient (API). From an analytical and measurement science perspective, this necessitates the measurement of the molecular weight, impurity characterisation, the quantitation of the number of conjugated versus free API molecules, the determination of the impurity profiles of the building blocks, primary structure and both particle size and morphology. Here we report the first example of a global characterisation of a drug-dendrimer conjugate - PEGylated poly-lysine dendrimer currently under development (AZD0466). The impact of the wide variety of analytical and measurement techniques on the overall understanding of this complex molecular entity is discussed, with the relative capabilities of the various approaches compared. The results of this study are an essential platform for the research and development of the future generations of related dendrimer-based medicines.


Assuntos
Antineoplásicos , Dendrímeros , Dendrímeros/química , Lisina , Antineoplásicos/química , Polietilenoglicóis/química
3.
J Chromatogr A ; 1638: 461839, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434814

RESUMO

The application of supercritical fluid chromatography (SFC) coupled to an evaporative light scattering detector (ELSD) and mass spectrometer (MS) was evaluated for the characterisation of three analogues of functionalised polyethylene glycol (PEG) 2000 (m-PEG-OH, m-PEG-cm and cm-PEG-cm (where m = OCH3 and cm = OCH2COOH)). These polymers are common excipients in drug product formulations for pharmaceuticals as they help provide the desired pharmacokinetic profile for successful drug delivery. A SFC-ELSD-MS method was developed which was selective to all three polymers, and allowed visualisation of these low UV chromophore materials. The method provided baseline resolution of the individual oligomers which allowed facile calculation of the polymer dispersity. A number of molecular weight characteristics were calculated, which showed the SFC-ELSD-MS methodology to be comparable with the current standard of analysis using size exclusion chromatography (SEC) with a triple detector array (TDA). The increased resolving power of SFC compared to SEC revealed a bimodal distribution of oligomers in the cm-PEG-cm 2000 polymer, which was not observed using SEC-TDA and exemplified SFC-ELSD as an orthogonal approach for polymer characterisation with the potential for much simpler, reduced sample and instrument preparation, calibration-less dispersity determination. When combined with SEC-TDA data, this combination allows a more complete characterisation of complex formulations excipients.


Assuntos
Cromatografia em Gel/métodos , Cromatografia com Fluido Supercrítico/métodos , Excipientes/química , Luz , Polietilenoglicóis/química , Espalhamento de Radiação , Calibragem , Hidrodinâmica , Espectrometria de Massas , Peso Molecular , Nebulizadores e Vaporizadores , Temperatura , Viscosidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-31566913

RESUMO

Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Nanomedicina , Nanopartículas , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...