Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Pharm Res ; 35(2): 44, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404777

RESUMO

PURPOSE: Oxidative stress is a hallmark of Alzheimer's Disease (AD) and promotes tau phosphorylation. Since Thioredoxin Interacting protein (TXNIP), the inhibitor of the anti-oxidant system of Thioredoxin, is up regulated in the hippocampus of AD patients, we investigated whether TXNIP plays a role in promoting tau phosphorylation and whether Verapamil, an inhibitor of TXNIP expression, prevents TXNIP downstream effects. METHODS: We analyzed TXNIP expression and tau phosphorylation in the hippocampus of the 5xFAD mice in the absence and presence of a pharmacological treatment with Verapamil. Using SH-SY5Y cells, we verified the causative role of TXNIP in promoting tau phosphorylation at Ser202/Thr205, by inducing TXNIP silencing. RESULTS: The amyloid beta peptide (Aß1-42) leads to TXNIP over-expression in SH-SY5Y cells, which in turns induces oxidative stress and the activation of p38 MAPK, promoting tau phosphorylation at Ser202/Thr205. Silencing of TXNIP abolishes Aß1-42-induced tau phosphorylation, p38 MAPK phosphorylation and subsequent tau phosphorylation. Verapamil prevents TXNIP expression as well as p38 MAPK and tau phosphorylation at Ser202/Thr205 in the hippocampus of the 5xFAD mice. CONCLUSIONS: Our study unveil a novel pathway involved in AD progression that is inhibited by Verapamil, shedding new light on the understanding of the therapeutic potential of Verapamil in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Proteínas de Transporte/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Verapamil/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Presenilina-1/genética , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Tiorredoxinas/metabolismo , Treonina/metabolismo , Verapamil/uso terapêutico
3.
PLoS One ; 10(6): e0131557, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121651

RESUMO

Multiple Sclerosis patients run an increased risk of microbial infections, which leads to high rates of hospitalization and infection-related mortality. Although immunotherapy may increase infection risk in some cases, data as to the relationship among microbial factors, immunotherapy and alterations in the innate immunity of these patients are still scanty. On these grounds, this interdisciplinary study aims at investigating the role the functional activity of polymorphonuclear cells (PMNs) play in relapsing remitting multiple sclerosis at different stages. The in vitro ability of PMNs from patients, either untreated or treated with immunosuppressant or immunomodulatory drugs to kill Klebsiella pneumonia or Candida albicans, were investigated and compared to PMNs from healthy subjects. The release of various cytokines was also assessed, as was the production of reactive oxygen species and their ability to regulate apoptosis after microbial stimulation. Our results indicate that although patients have a normal number of PMNs, they have a statistically significant (p<0.05) reduction in intracellular killing activity. Although variations are strongly related to the therapeutic management of patients, they are independent from their disease stage. As no statistically significant differences were observed between patients and controls in cytokine release values, reactive oxygen species production or apoptosis, we came to the conclusion that other factors may be involved. Supportive validation of these results from further studies might well help in identifying a subset of patients at high risk of infection who could benefit from a closer follow-up and/or antibiotic prophylaxis.


Assuntos
Leucócitos Mononucleares/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Morte Celular/efeitos dos fármacos , Citocinas/metabolismo , Demografia , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Espaço Intracelular/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Natalizumab/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Adulto Jovem
4.
Mult Scler ; 17(10): 1194-201, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21613335

RESUMO

BACKGROUND: Progranulin (PGRN) is a fundamental neurotrophic factor, and is also involved in inflammation and wound repair. PGRN may have pro- or anti-inflammatory properties, depending upon proteolysis of the anti-inflammatory parent PGRN protein and the generation of pro-inflammatory granulin peptides. OBJECTIVES: Our objectives were as follows: (1) to evaluate the presence and distribution of PGRN in multiple sclerosis (MS) brain tissue, correlating it with demyelination and inflammation; (2) to evaluate cerebrospinal fluid (CSF) PGRN concentrations in patients with MS and controls, in relationship to the clinical features of the disease. METHODS: Our study involved the following: (1) neuropathological study of PGRN on post-mortem tissue of 19 MS and six control brains; (2) evaluation of PGRN CSF concentration in 40 MS patients, 15 non-inflammatory controls and five inflammatory controls (viral encephalitis). RESULTS: In active demyelinating lesions, PGRN was expressed on macrophages/microglia. In the normal-appearing white matter (NAWM), expression of PGRN was observed on activated microglia. PGRN was expressed by neurons and microglia in cortical lesions and in normal-appearing cortex. No expression of PGRN was observed in controls, except on neurons. PGRN CSF concentrations were significantly higher in patients with relapsing-remitting MS during relapses and in progressive MS patients, compared with relapsing-remitting MS patients during remissions and with non-inflammatory controls. CONCLUSIONS: PGRN is strongly expressed in MS brains, by macrophages/microglia in active lesions, and by activated microglia in the NAWM; PGRN CSF concentrations in MS are correspondingly increased in conditions of enhanced macrophage/microglia activation, such as during relapses and in progressive MS.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Peptídeos e Proteínas de Sinalização Intercelular/análise , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Progranulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA