Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(11): e1011610, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939201

RESUMO

To support decision-making and policy for managing epidemics of emerging pathogens, we present a model for inference and scenario analysis of SARS-CoV-2 transmission in the USA. The stochastic SEIR-type model includes compartments for latent, asymptomatic, detected and undetected symptomatic individuals, and hospitalized cases, and features realistic interval distributions for presymptomatic and symptomatic periods, time varying rates of case detection, diagnosis, and mortality. The model accounts for the effects on transmission of human mobility using anonymized mobility data collected from cellular devices, and of difficult to quantify environmental and behavioral factors using a latent process. The baseline transmission rate is the product of a human mobility metric obtained from data and this fitted latent process. We fit the model to incident case and death reports for each state in the USA and Washington D.C., using likelihood Maximization by Iterated particle Filtering (MIF). Observations (daily case and death reports) are modeled as arising from a negative binomial reporting process. We estimate time-varying transmission rate, parameters of a sigmoidal time-varying fraction of hospitalized cases that result in death, extra-demographic process noise, two dispersion parameters of the observation process, and the initial sizes of the latent, asymptomatic, and symptomatic classes. In a retrospective analysis covering March-December 2020, we show how mobility and transmission strength became decoupled across two distinct phases of the pandemic. The decoupling demonstrates the need for flexible, semi-parametric approaches for modeling infectious disease dynamics in real-time.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Estados Unidos/epidemiologia , SARS-CoV-2 , COVID-19/epidemiologia , Estudos Retrospectivos , Doenças Transmissíveis/epidemiologia , Pandemias
2.
J R Soc Interface ; 19(193): 20220123, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35919978

RESUMO

Timely forecasts of the emergence, re-emergence and elimination of human infectious diseases allow for proactive, rather than reactive, decisions that save lives. Recent theory suggests that a generic feature of dynamical systems approaching a tipping point-early warning signals (EWS) due to critical slowing down (CSD)-can anticipate disease emergence and elimination. Empirical studies documenting CSD in observed disease dynamics are scarce, but such demonstration of concept is essential to the further development of model-independent outbreak detection systems. Here, we use fitted, mechanistic models of measles transmission in four cities in Niger to detect CSD through statistical EWS. We find that several EWS accurately anticipate measles re-emergence and elimination, suggesting that CSD should be detectable before disease transmission systems cross key tipping points. These findings support the idea that statistical signals based on CSD, coupled with decision-support algorithms and expert judgement, could provide the basis for early warning systems of disease outbreaks.


Assuntos
Doenças Transmissíveis , Sarampo , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Surtos de Doenças , Previsões , Humanos , Sarampo/diagnóstico , Sarampo/epidemiologia , Modelos Biológicos
3.
Ecol Lett ; 24(9): 1892-1904, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34170615

RESUMO

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.


Assuntos
Biodiversidade , Ecossistema , Plantas
4.
Ecology ; 102(6): e03336, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33710619

RESUMO

Selecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis. We argue that there are three distinct goals for statistical modeling in ecology: data exploration, inference, and prediction. Once the modeling goal is clearly articulated, an appropriate model selection procedure is easier to identify. We review model selection approaches and highlight their strengths and weaknesses relative to each of the three modeling goals. We then present examples of modeling for exploration, inference, and prediction using a time series of butterfly population counts. These show how a model selection approach flows naturally from the modeling goal, leading to different models selected for different purposes, even with exactly the same data set. This review illustrates best practices for ecologists and should serve as a reminder that statistical recipes cannot substitute for critical thinking or for the use of independent data to test hypotheses and validate predictions.


Assuntos
Ecologia , Modelos Estatísticos
5.
Ecol Lett ; 21(12): 1757-1770, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251392

RESUMO

In both plant and animal systems, size can determine whether an individual survives and grows under different environmental conditions. However, it is unclear whether and when size-dependent responses to exogenous environmental fluctuations affect population dynamics. Size-by-environment interactions create pathways for environmental fluctuations to influence population dynamics by allowing for negative covariation between sizes within vital rates (e.g. small and large individuals have negatively covarying survival rates) and/or size-dependent variability in a vital rate (e.g. survival of large individuals varies less than small individuals through time). Whether these phenomena affect population dynamics depends on how they are mediated by elasticities (they must affect the sizes and vital rates that matter) and their projected impacts will depend on model functional form (the impact of reduced variance depends on the relationship between the environment and vital rate). We demonstrate these ideas with an analysis of fifteen species from five semiarid plant communities. We find that size-by-environment interactions are common but do not impact long-term population dynamics. Size-by-environment interactions may yet be important for other species. Our approach can be applied to species in other ecosystems to determine if and how size-by-environment interactions allow them to cope with, or exploit, fluctuating environments.


Assuntos
Ecossistema , Plantas , Animais , Dinâmica Populacional
6.
Ecol Lett ; 21(9): 1319-1329, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938882

RESUMO

Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra- and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five-fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra- and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.


Assuntos
Ecossistema , Plantas , Dinâmica Populacional
7.
PeerJ ; 6: e4485, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576958

RESUMO

BACKGROUND: Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. METHODS: We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. RESULTS: Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. DISCUSSION: Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response of ANPP to soil moisture was consistently weak and community composition was stable. The similarity of ecosystem functional responses across treatments was not related to compensatory shifts at the plant community level, but instead may reflect the insensitivity of the dominant species to soil moisture. These species may be successful precisely because they have evolved life history strategies that buffer them against precipitation variability.

8.
Proc Natl Acad Sci U S A ; 115(7): 1424-1432, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382745

RESUMO

Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.


Assuntos
Ecologia/educação , Ecologia/métodos , Teorema de Bayes , Mudança Climática , Ecologia/tendências , Ecossistema , Previsões , Humanos , Modelos Teóricos
9.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067791

RESUMO

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos Testes
10.
Ecol Lett ; 20(8): 958-968, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28598032

RESUMO

Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability.


Assuntos
Biodiversidade , Ecossistema
11.
Ecology ; 98(4): 971-981, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28144939

RESUMO

Temporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species' responses to the environment.


Assuntos
Meio Ambiente , Pradaria , Plantas/classificação , Ecossistema , Dinâmica Populacional
12.
Science ; 351(6272): 457, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823418

RESUMO

Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.


Assuntos
Biodiversidade , Pradaria , Desenvolvimento Vegetal
13.
Am Nat ; 185(5): E153-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25905514

RESUMO

Contemporary theory on the maintenance and stability of the savanna biome has focused extensively on how climate and disturbances interact to affect tree growth and demography. In particular, the role of fire in reducing tree cover from climatic maxima is now well appreciated, and in certain cases, herbivory also strongly affects tree cover. However, in African savannas and forests, harvest of trees by humans for cooking and heating is an oft overlooked disturbance. Thus, we incorporate tree harvest into a population dynamic model of grasses, savanna saplings, savanna trees, and forest trees. We use assumptions about the differential demographic responses of savanna trees and forest trees to harvest to show how tree harvest influences tree cover, demography, and community composition. Tree harvest can erode the intrinsic basin of attraction for forest and make a state transition via fire to savanna more likely. The savanna state is generally resilient to all but high levels of tree harvest because of the resprouting abilities of savanna trees. In the absence of active fire suppression, our analysis suggests that we can expect to see large and potentially irreversible shifts from forest to savanna as demand increases for charcoal in sub-Saharan Africa. On the other hand, savanna tree species' traits promote savanna stability in the face of low to moderate harvest pressure.


Assuntos
Florestas , Pradaria , Atividades Humanas , Árvores/fisiologia , África Subsaariana , Ecossistema , Incêndios , Modelos Biológicos , Poaceae
14.
Glob Ecol Biogeogr ; 23(3): 259-263, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26430386

RESUMO

Multiple stable states, bifurcations and thresholds are fashionable concepts in the ecological literature, a recognition that complex ecosystems may at times exhibit the interesting dynamic behaviours predicted by relatively simple biomathematical models. Recently, several papers in Global Ecology and Biogeography, Proceedings of the National Academy of Sciences USA, Science and elsewhere have attempted to quantify the prevalence of alternate stable states in the savannas of Africa, Australia and South America, and the tundra-taiga-grassland transitions of the circum-boreal region using satellite-derived woody canopy cover. While we agree with the logic that basins of attraction can be inferred from the relative frequencies of ecosystem states observed in space and time, we caution that the statistical methodologies underlying the satellite product used in these studies may confound our ability to infer the presence of multiple stable states. We demonstrate this point using a uniformly distributed 'pseudo-tree cover' database for Africa that we use to retrace the steps involved in creation of the satellite tree-cover product and subsequent analysis. We show how classification and regression tree (CART)-based products may impose discontinuities in satellite tree-cover estimates even when such discontinuities are not present in reality. As regional and global remote sensing and geospatial data become more easily accessible for ecological studies, we recommend careful consideration of how error distributions in remote sensing products may interact with the data needs and theoretical expectations of the ecological process under study.

15.
PLoS One ; 8(3): e58241, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484003

RESUMO

Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of 'universal' scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and 'global' (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.


Assuntos
Ecossistema , Modelos Teóricos , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimento , Teorema de Bayes , Mali , Cadeias de Markov , Método de Monte Carlo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...