Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 117(3): 289-96, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876356

RESUMO

BACKGROUND: phosphorylation of AS160 and TBC1D1 plays an important role for GLUT4 mobilization to the cell surface. The phosphorylation of AS160 and TBC1D1 in humans in response to acute exercise is not fully characterized. OBJECTIVE: to study AS160 and TBC1D1 phosphorylation in human skeletal muscle after aerobic exercise followed by a hyperinsulinemic euglycemic clamp. DESIGN: eight healthy men were studied on two occasions: 1) in the resting state and 2) in the hours after a 1-h bout of ergometer cycling. A hyperinsulinemic euglycemic clamp was initiated 240 min after exercise and in a time-matched nonexercised control condition. We obtained muscle biopsies 30 min after exercise and in a time-matched nonexercised control condition (t = 30) and after 30 min of insulin stimulation (t = 270) and investigated site-specific phosphorylation of AS160 and TBC1D1. RESULTS: phosphorylation on AS160 and TBC1D1 was increased 30 min after the exercise bout, whereas phosphorylation of the putative upstream kinases, Akt and AMPK, was unchanged compared with resting control condition. Exercise augmented insulin-stimulated phosphorylation on AS160 at Ser(341) and Ser(704) 270 min after exercise. No additional exercise effects were observed on insulin-stimulated phosphorylation of Thr(642) and Ser(588) on AS160 or Ser(237) and Thr(596) on TBC1D1. CONCLUSIONS: AS160 and TBC1D1 phosphorylations were evident 30 min after exercise without simultaneously increased Akt and AMPK phosphorylation. Unlike TBC1D1, insulin-stimulated site-specific AS160 phosphorylation is modified by prior exercise, but these sites do not include Thr(642) and Ser(588). Together, these data provide new insights into phosphorylation of key regulators of glucose transport in human skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Transporte Biológico/fisiologia , Glucose/metabolismo , Técnica Clamp de Glucose , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Contração Muscular/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Descanso/fisiologia
2.
Nutr Diabetes ; 3: e74, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23752133

RESUMO

INTRODUCTION: Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood. METHODS: Here, lean, obese and T2D subjects underwent a euglycemic-hyperinsulinemic clamp, and vastus lateralis muscle biopsies were obtained before, and at 30 and 180 min post insulin infusion. RESULTS: Obese and T2D subjects had higher body mass indexes and fasting insulin concentrations, and T2D subjects showed insulin resistance. Consistent with the clamp findings, T2D subjects had impaired insulin-stimulated phosphorylation of AS160 Thr(642), a site previously shown to be important in glucose uptake in rodents. Interestingly, insulin-stimulated phosphorylation of TBC1D1 Thr(590), a site shown to be regulated by insulin in rodents, was only increased in T2D subjects, although the functional significance of this difference is unknown. CONCLUSION: These data show that insulin differentially regulates AS160 and TBC1D1 phosphorylation in human skeletal muscle. Impaired insulin-stimulated glucose uptake in T2D subjects is accompanied by dysregulation of AS160 and TBC1D1 phosphorylation in skeletal muscle, suggesting that these proteins may regulate glucose uptake in humans.

3.
Am J Physiol Endocrinol Metab ; 302(2): E190-200, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22028408

RESUMO

During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.


Assuntos
Jejum/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Glicogênio/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Músculo Esquelético/metabolismo , Adenilato Quinase/metabolismo , Adulto , Estudos Cross-Over , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Insulina/metabolismo , Masculino , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
4.
Diabetologia ; 54(1): 157-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20938636

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated glucose disposal rates (R(d)) are reduced in type 2 diabetic patients, a process in which intrinsic signalling defects are thought to be involved. Phosphorylation of TBC1 domain family, member 4 (TBC1D4) is at present the most distal insulin receptor signalling event linked to glucose transport. In this study, we examined insulin action on site-specific phosphorylation of TBC1D4 and the effect of exercise training on insulin action and signalling to TBC1D4 in skeletal muscle from type 2 diabetic patients. METHODS: During a 3 h euglycaemic-hyperinsulinaemic (80 mU min⁻¹ m⁻²) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. RESULTS: Before training, reductions in insulin-stimulated R (d), together with impaired insulin-stimulated glycogen synthase fractional velocity, Akt Thr³°8 phosphorylation and phosphorylation of TBC1D4 at Ser³¹8, Ser588 and Ser75¹ were observed in skeletal muscle from diabetic patients. Interestingly, exercise-training normalised insulin-induced TBC1D4 phosphorylation in diabetic patients. This happened independently of increased TBC1D4 protein content, but exercise-training did not normalise Akt phosphorylation in diabetic patients. In both groups, training-induced improvements in insulin-stimulated R(d) (~20%) were associated with increased muscle protein content of Akt, TBC1D4, α2-AMP-activated kinase (AMPK), glycogen synthase, hexokinase II and GLUT4 (20-75%). CONCLUSIONS/INTERPRETATION: Impaired insulin-induced site-specific TBC1D4 phosphorylation may contribute to skeletal muscle insulin resistance in type 2 diabetes. The mechanisms by which exercise-training improves insulin sensitivity in type 2 diabetes may involve augmented signalling of TBC1D4 and increased skeletal muscle content of key insulin signalling and effector proteins, e.g., Akt, TBC1D4, AMPK, glycogen synthase, GLUT4 and hexokinase II.


Assuntos
Exercício Físico/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Glicemia/metabolismo , Western Blotting , Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Eletroforese em Gel de Poliacrilamida , Técnica Clamp de Glucose , Hemoglobinas Glicadas/metabolismo , Glicogênio Sintase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
5.
Diabetologia ; 52(5): 891-900, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19252894

RESUMO

AIMS/HYPOTHESIS: TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does not involve modulation at proximal insulin signalling intermediates. We hypothesised that signalling through TBC1D4 is involved in this effect of exercise as it is a common signalling element for insulin and exercise. METHODS: Insulin-regulated glucose metabolism was evaluated in 12 healthy moderately trained young men 4 h after one-legged exercise at basal and during a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis biopsies were taken before and immediately after the clamp. RESULTS: Insulin stimulation increased glucose uptake in both legs, with greater effects (approximately 80%, p < 0.01) in the previously exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p < 0.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p < 0.01; Ser-588, p = 0.09; observed power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p < 0.01) in both legs during insulin stimulation. CONCLUSION/INTERPRETATION: We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased insulin action after exercise.


Assuntos
Exercício Físico/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Insulina/fisiologia , Músculo Esquelético/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Adulto , Biópsia , Glicemia/metabolismo , Primers do DNA , Dieta , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Hiperinsulinismo/etiologia , Articulação do Joelho/fisiologia , Perna (Membro)/fisiologia , Masculino , Consumo de Oxigênio , Fosforilação , Descanso , Transdução de Sinais , Decúbito Dorsal , Carga de Trabalho , Adulto Jovem
6.
Int J Obes (Lond) ; 32 Suppl 4: S13-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18719592

RESUMO

5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first shown to regulate fatty acid and cholesterol synthesis, but is now hypothesized to take part in the regulation of energy/fuel balance not only at the cellular level but also at the level of the whole organism. In this brief review we will discuss some of the roles of AMPK in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/enzimologia , Animais , Glucose/metabolismo , Humanos , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...