Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(3): 033544, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819995

RESUMO

We present experimental studies of inverted-corona targets as neutron sources at the OMEGA Laser Facility and the National Ignition Facility (NIF). Laser beams are directed onto the inner walls of a capsule via laser-entrance holes (LEHs), heating the target interior to fusion conditions. The fusion fuel is provided either as a wall liner, e.g., deuterated plastic (CD), or as a gas fill, e.g., D2 gas. Such targets are robust to low-mode drive asymmetries, allowing for single-sided laser drive. On OMEGA, 1.8-mm-diameter targets with either a 10-µm CD liner or up to 2 atm of D2-gas fill were driven with up to 18 kJ of laser energy in a 1-ns square pulse. Neutron yields of up to 1.5 × 1010 generally followed expected trends with fill pressure or laser energy, although the data imply some mix of the CH wall into the fusion fuel for either design. Comparable performance was observed with single-sided (1x LEH) or double-sided (2x LEH) drive. NIF experiments tested the platform at scaled up dimensions and energies, combining a 15-µm CD liner and a 3-atm D2-gas fill in a 4.5-mm diameter target, laser-driven with up to 330 kJ. Neutron yields up to 2.6 × 1012 were measured, exceeding the scaled yield expectation from the OMEGA data. The observed energy scaling on the NIF implies that the neutron production is gas dominated, suggesting a performance boost from using deuterium-tritium (DT) gas. We estimate that neutron yields exceeding 1014 should be readily achievable using a modest laser drive of ∼300 kJ with a DT fill.

2.
Nat Commun ; 12(1): 1638, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712576

RESUMO

Key insights in materials at extreme temperatures and pressures can be gained by accurate measurements that determine the electrical conductivity. Free-electron laser pulses can ionize and excite matter out of equilibrium on femtosecond time scales, modifying the electronic and ionic structures and enhancing electronic scattering properties. The transient evolution of the conductivity manifests the energy coupling from high temperature electrons to low temperature ions. Here we combine accelerator-based, high-brightness multi-cycle terahertz radiation with a single-shot electro-optic sampling technique to probe the evolution of DC electrical conductivity using terahertz transmission measurements on sub-picosecond time scales with a multi-undulator free electron laser. Our results allow the direct determination of the electron-electron and electron-ion scattering frequencies that are the major contributors of the electrical resistivity.

3.
Rev Sci Instrum ; 89(10): 103302, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399880

RESUMO

The interaction of ion beams with matter includes the investigation of the basic principles of ion stopping in heated materials. An unsolved question is the effect of different, especially higher, ion beam fluences on ion stopping in solid targets. This is relevant in applications such as in fusion sciences. To address this question, a Thomson parabola was built for the Neutralized Drift Compression eXperiment (NDCX-II) for ion energy-loss measurements at different ion beam fluences. The linear induction accelerator NDCX-II delivers 2 ns short, intense ion pulses, up to several tens of nC/pulse, or 1010-1011 ions, with a peak kinetic energy of ∼1.1 MeV and a minimal spot size of 2 mm FWHM. For this particular accelerator, the energy determination with conventional beam diagnostics, for example, time of flight measurements, is imprecise due to the non-trivial longitudinal phase space of the beam. In contrast, a Thomson parabola is well suited to reliably determine the beam energy distribution. The Thomson parabola differentiates charged particles by energy and charge-to-mass ratio, through deflection of charged particles by electric and magnetic fields. During first proof-of-principle experiments, we achieved to reproduce the average initial helium beam energy as predicted by computer simulations with a deviation of only 1.4%. Successful energy-loss measurements with 1 µm thick silicon nitride foils show the suitability of the accelerator for such experiments. The initial ion energy was determined during a primary measurement without a target, while a second measurement, incorporating the target, was used to determine the transmitted energy. The energy-loss was then determined as the difference between the two energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...