Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760886

RESUMO

Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene which encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.

2.
Am J Physiol Regul Integr Comp Physiol ; 324(6): R735-R746, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036301

RESUMO

Mitochondria serve as critical producers of both cellular energy and metabolic precursors for biosynthesis required for organismal growth, activity, somatic maintenance, and reproduction. Consequently, variation in mitochondrial function is commonly associated with variation in life histories both within and across species. For instance, flight-capable, long-winged crickets have mitochondria with larger bioenergetic capacities than flightless, short-winged crickets investing in early lifetime fecundity instead of flight. However, we do not know whether differences in mitochondrial function associated with life history are fixed or result from flexible changes in metabolism throughout the life cycle. We measured mitochondrial function of fat body tissue across early adulthood of long-winged and short-winged crickets from two species of wing-polymorphic field crickets (Gryllus firmus and Gryllus lineaticeps). Fat body is a multifunctional organ that supports both flight and reproduction in insects. Consistent with flexibility in mitochondrial function specific for alternative life histories, the capacity for oxidative phosphorylation increases in mitochondria throughout early adulthood in the fat body of long-winged but not short-winged crickets. Furthermore, fat body mitochondrial oxidative phosphorylation capacities declined rapidly when long-wing crickets degraded their flight muscles and initiated large-scale oogenesis. This finding suggests that shifts in tissue function require a concurrent shift in mitochondrial function and that tissue-specific functional constraints may underpin the flight-oogenesis trade-off. In conclusion, changes in mitochondrial bioenergetics form a component of alternative life histories, indicating that mitochondrial function is dynamic and set to a level that matches current and future energy demands and biosynthetic requirements of life history.


Assuntos
Gryllidae , Animais , Gryllidae/metabolismo , Reprodução/fisiologia , Músculos , Tecido Adiposo/metabolismo , Mitocôndrias
3.
Curr Res Insect Sci ; 2: 100038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003265

RESUMO

Insects behaviorally thermoregulate across the diel cycle, and their preferred microhabitats change based on current resources available and the thermal performance optima of traits. Specific combinations of traits being prioritized are set by life history strategies, making life history an important intrinsic determinant of thermal preferences. However, we do not know how life history strategies shape plasticity of behavioral thermoregulation, limiting our ability to predict responses to environmental variability. We compared female variable field crickets (Gryllus lineaticeps) that are flight-capable (long-winged) and flightless (short-winged) to test the hypothesis that life history strategy determines plasticity of thermal preferences across the diel cycle and following starvation. Thermal preferences were elevated during the nocturnal activity period, and long-winged crickets preferred warmer temperatures compared to short-winged crickets across the diel cycle when fully fed. However, thermal preferences of starved crickets were reduced compared to fed crickets. The reduction in thermal preferences was greater in long-winged crickets, resulting in similar thermal preferences between starved long- and short-winged individuals and reflecting a more plastic response. Thus, life history does determine plasticity in thermoregulatory behaviors following resource limitations and effects of life history on thermal preferences are context dependent.

4.
J Evol Biol ; 35(4): 599-609, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35255175

RESUMO

Life history and metabolism covary, but the mechanisms and individual traits responsible for these linkages remain unresolved. Dispersal capability is a critical component of life history that is constrained by metabolic capacities for energy production. Conflicting relationships between metabolism and life histories may be explained by accounting for variation in dispersal and maximal metabolic rates. We used female wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings (LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selection on dispersal capability drives the evolution of metabolic capacities. While resting metabolic rates were similar, long-winged crickets reached higher maximal metabolic rates than short-winged crickets, resulting in improved running performance. We further provided insight into the mechanisms responsible for covariation between life history and metabolism by comparing mitochondrial content of tissues involved in powering locomotion and assessing the function of mitochondria isolated from long- and short-winged crickets. Our results demonstrated that larger metabolic capacities in long-winged crickets were underpinned by increases in mitochondrial content of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selection on flight capability correlates with increases in maximal, but not resting metabolic rates, through modifications of tissues powering locomotion at the cellular and organelle levels. This allows organisms to meet high energetic demands of activity for life history. Dispersal capability should therefore explicitly be considered as a potential factor driving the evolution of metabolic capacities.


Assuntos
Gryllidae , Animais , Metabolismo Energético , Feminino , Gryllidae/fisiologia , Fenótipo , Asas de Animais/metabolismo
5.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912953

RESUMO

Animals adjust resource acquisition throughout life to meet changing physiological demands of growth, reproduction, activity and somatic maintenance. Wing-polymorphic crickets invest in either dispersal or reproduction during early adulthood, providing a system in which to determine how variation in physiological demands, determined by sex and life history strategy, impact nutritional targets, plus the consequences of nutritionally imbalanced diets across life stages. We hypothesized that high demands of biosynthesis (especially oogenesis in females) drive elevated resource acquisition requirements and confer vulnerability to imbalanced diets. Nutrient targets and allocation into key tissues associated with life history investments were determined for juvenile and adult male and female field crickets (Gryllus lineaticeps) when given a choice between two calorically equivalent but nutritionally imbalanced (protein- or carbohydrate-biased) artificial diets, or when restricted to one imbalanced diet. Flight muscle synthesis drove elevated general caloric requirements for juveniles investing in dispersal, but flight muscle quality was robust to imbalanced diets. Testes synthesis was not costly, and life history investments by males were insensitive to diet composition. In contrast, costs of ovarian synthesis drove elevated caloric and protein requirements for adult females. When constrained to a carbohydrate-biased diet, ovary synthesis was reduced in reproductive morph females, eliminating their advantage in early life fecundity over the dispersal morph. Our findings demonstrate that nutrient acquisition modulates dispersal-reproduction trade-offs in an age- and sex-specific manner. Declines in food quality will thus disproportionately affect specific cohorts, potentially driving demographic shifts and altering patterns of life history evolution.


Assuntos
Gryllidae , Animais , Dieta , Ingestão de Alimentos , Feminino , Masculino , Reprodução , Asas de Animais
6.
Proc Biol Sci ; 287(1929): 20200842, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546100

RESUMO

The emergency life-history stage (ELHS) can be divided into two subcategories that describe distinct, coordinated responses to disease- or non-disease-related physiological challenges. Whether an individual can simultaneously express aspects of both subcategories when faced with multiple challenges is poorly understood. Emergency life-history theory suggests that disease- and non-disease-related responses are coordinated at the level of the whole organism and therefore cannot be expressed simultaneously. However, the reactive scope and physiological regulatory network models suggest that traits can be independently regulated, allowing for components of both disease- and non-disease-related responses to be simultaneously expressed within a single organism. To test these ideas experimentally, we subjected female zebra finches to food deprivation, an immune challenge, both, or neither, and measured a suite of behavioural and physiological traits involved in the ELHS. We examined whether the trait values expressed by birds experiencing simultaneous challenges resembled trait values of birds experiencing a single challenge or if birds could express a mixture of trait values concurrently. We find that birds can respond to simultaneous challenges by regulating components of the behavioural and immune responses independently of one another. Modularity within these physio-behavioural networks adds additional dimensions to how we evaluate the intensity or quality of an ELHS. Whether modularity provides fitness advantages or costs in nature remains to be determined.


Assuntos
Tentilhões/fisiologia , Animais , Corticosterona , Feminino , Privação de Alimentos , Comportamento de Doença , Estágios do Ciclo de Vida , Masculino
7.
Biol Lett ; 11(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26179798

RESUMO

Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation.


Assuntos
Arvicolinae/metabolismo , Atividade Motora/fisiologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Arvicolinae/psicologia , Dano ao DNA , Masculino , Espécies Reativas de Oxigênio/metabolismo , Isolamento Social , Estresse Psicológico/psicologia
8.
Biol Lett ; 11(2): 20140991, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25716089

RESUMO

Telomeres are regarded as important biomarkers of ageing and serve as useful tools in revealing how stress acts at the cellular level. However, the effects of social and ecological factors on telomere length remain poorly understood, particularly in free-ranging mammals. Here, we investigated the influences of within-group dominance rank and group membership on telomere length in wild adult spotted hyenas (Crocuta crocuta). We found large effects of both factors; high-ranking hyenas exhibited significantly greater mean telomere length than did subordinate animals, and group membership significantly predicted mean telomere length within high-ranking females. We further inquired whether prey availability mediates the observed effect of group membership on telomere length, but this hypothesis was not supported. Interestingly, adult telomere length was not predicted by age. Our work shows for the first time, to the best of our knowledge, the effects of social rank on telomere length in a wild mammal and enhances our understanding of how social and ecological variables may contribute to organismal senescence.


Assuntos
Hyaenidae/fisiologia , Comportamento Social , Predomínio Social , Telômero/genética , Envelhecimento/genética , Animais , Comportamento Animal , Feminino , Hyaenidae/genética , Quênia , Masculino , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...