Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychol ; 82(3): 281-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19733617

RESUMO

Detection of deviant speech syllables embedded in continuous noise was investigated in an oddball paradigm. Behavioral results showed improvement of detecting and identifying the syllables when congruent visual speech accompanied the utterances. A centrally maximal negative ERP difference wave peaking at approximately 290ms post-stimulus was elicited by audiovisual but not by auditory- or visual-only task-irrelevant deviant syllables. Whereas the circumstances of the elicitation of this ERP response are similar to those of the mismatch negativity component (MMN and its visual counterpart, vMMN), its scalp distribution differs from that of both unimodal MMNs. Elicitation of an MMN-like ERP response (termed here as the audiovisual MMN: avMMN) suggests that detection of the audiovisual deviants involved integrated audiovisual memory representations. The pattern of behavioral and ERP results suggest that the formation of such cross-modal memory representation does not require voluntary operations and may even proceed for stimuli outside the focus of attention.


Assuntos
Encéfalo/fisiologia , Rememoração Mental/fisiologia , Reconhecimento Psicológico/fisiologia , Percepção da Fala/fisiologia , Fala/fisiologia , Estimulação Acústica , Adulto , Análise de Variância , Atenção/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Mascaramento Perceptivo/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador , Percepção Visual/fisiologia
2.
IEEE Trans Neural Syst Rehabil Eng ; 14(2): 225-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16792300

RESUMO

We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 62-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: 1) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal electrooculograms (EOG) signals, 2) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from 12 electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about 3 min. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 s for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/).


Assuntos
Algoritmos , Auxiliares de Comunicação para Pessoas com Deficiência , Periféricos de Computador , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Interface Usuário-Computador , Córtex Visual/fisiologia , Apresentação de Dados , Retroalimentação/fisiologia , Humanos , Sistemas Homem-Máquina , Análise e Desempenho de Tarefas , Volição
3.
IEEE Trans Neural Syst Rehabil Eng ; 11(2): 94-109, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12899247

RESUMO

This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.


Assuntos
Algoritmos , Encéfalo/fisiopatologia , Auxiliares de Comunicação para Pessoas com Deficiência , Eletroencefalografia/métodos , Interface Usuário-Computador , Membros Artificiais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Córtex Cerebral/fisiopatologia , Sistemas Computacionais , Pessoas com Deficiência/reabilitação , Eletroencefalografia/instrumentação , Potenciais Evocados , Retroalimentação , Humanos , Modelos Neurológicos , Doenças Neuromusculares/fisiopatologia , Doenças Neuromusculares/reabilitação , Próteses e Implantes , Robótica/instrumentação , Robótica/métodos , Tecnologia Assistiva , Processamento de Sinais Assistido por Computador
4.
IEEE Trans Neural Syst Rehabil Eng ; 11(2): 199-204, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12899274

RESUMO

We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies for computer interfaces using electroencephalogram (EEG) signals; 3) a flexible computation framework for neuroelectric interface research; and d) noncontact sensors, which measure electromyogram or EEG signals without resistive contact to the body.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Eletromiografia/métodos , Potenciais Evocados/fisiologia , Adulto , Aeronaves , Encéfalo/fisiologia , Auxiliares de Comunicação para Pessoas com Deficiência , Gráficos por Computador , Dedos/fisiologia , Antebraço/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...