Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139462

RESUMO

Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glutamina/metabolismo , Reprogramação Metabólica , Glicólise/fisiologia , Glioma/patologia , Transdução de Sinais , Apoptose , Proliferação de Células/fisiologia
2.
Rev Neurosci ; 34(8): 915-932, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37409540

RESUMO

The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine ß-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.


Assuntos
Cisteína , Doença de Parkinson , Humanos , Cisteína/metabolismo , Enxofre/metabolismo , Cistationina beta-Sintase/metabolismo , Glutationa/metabolismo
3.
Cancers (Basel) ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565420

RESUMO

A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.

4.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34577571

RESUMO

The Wnt/ß-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through ß-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/ß-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of ß-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/ß-catenin pathway could open new therapeutic opportunities.

5.
J Cancer ; 12(19): 5693-5711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475984

RESUMO

Gliomas are the most aggressive neoplasms that affect the central nervous system, being glioblastoma multiforme (GBM) the most malignant. The resistance of GBM to therapies is attributed to its high rate of cell proliferation, angiogenesis, invasion, and resistance to apoptosis; thus, finding alternative therapeutic approaches is vital. In this work, the anti-proliferative, pro-apoptotic, and anti-invasive effect of the copper coordination compound Casiopeina III-La (Cas III-La) on human U373 MG cells was determined in vitro and in vivo. Our results indicate that Cas III-La exerts an anti-proliferative effect, promoting apoptotic cell death and inactivating the invasive process by generating reactive oxygen species (ROS), inactivating GSK3ß, activating JNK and ERK, and promoting the nuclear accumulation of ß-catenin. The inhibition of ROS generation by N-acetyl-l-cysteine not only recovered cell migration and viability, but also reduced ß-catenin accumulation and JNK and ERK activation. Additionally, Cas III-La significantly reduced tumor volume, cell proliferation and mitotic indices, and increased the apoptotic index in mice xenotransplanted with U373 glioma cells. Thus, Cas III-La is a promising agent to treat GBM.

6.
Pharmaceuticals (Basel) ; 13(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707662

RESUMO

Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.

7.
Crit Rev Oncog ; 24(4): 307-338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32421988

RESUMO

Gliomas are the most common and most lethal primary malignant adult brain tumors, and glioblastomas are the most frequent. Several risk factors are involved in their pathogenesis; these include environmental factors as well as host factors. The etiology of most gliomas remains unknown. Epstein-Barr Virus (EBV), a member of the Herpesviridae family, was the first tumoral virus to be described, and several viruses in connection with cancer were discovered thereafter. During the complex interaction between host and EBV, several events take place. In the context of survival, EBV can drive its host cells with subsequent disruption of the cellular machinery, leading to tumorigenesis as the final outcome. Thus, the EBV infection has been associated with different tumors. In this review, we discuss EBV and cancer. We have analyzed previously published papers and have conducted a critical analysis on the role of the viral infection in glioblastoma. Several works have described the presence of the virus, but none have shown a conclusive association. Thus, there is need to continue analyzing the interaction between host and virus to determine whether the viral presence is incidental or has some association with glioblastoma.


Assuntos
Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/virologia , Infecções por Vírus Epstein-Barr/epidemiologia , Glioblastoma/epidemiologia , Glioblastoma/virologia , Herpesvirus Humano 4/fisiologia , Animais , Neoplasias Encefálicas/diagnóstico , Epigênese Genética/fisiologia , Infecções por Vírus Epstein-Barr/diagnóstico , Glioblastoma/diagnóstico , Humanos
8.
Int J Mol Sci ; 19(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486451

RESUMO

Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glioblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ensaios Clínicos como Assunto , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Terapia de Alvo Molecular , Resultado do Tratamento
9.
CNS Neurol Disord Drug Targets ; 16(7): 772-780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28124605

RESUMO

BACKGROUND: Epilepsy is one of the most common neurological disorders in humans, and the role of the cerebellum in its physiopathology remains the subject of study. The Purkinje cells (PC), whose axons target the dentate and interpositus nuclei, form the main cerebellar output to forebrain structures involved in epilepsy. Cerebellar atrophy related to loss of PC has been reported in chronic epilepsy although its mechanism remains unclear. Taking into account that an overexpression of ß-Catenin has been related with cell death, here we present the signaling of ß-Catenin and the type of PC death in cerebellum of rats with seizures induced by the amygdaloid kindling model. METHOD: Using an immunohistochemistry and western blot assay for ß-Catenin, c-Myc, cyclin D3, TUNEL and caspase-3, in rats chronically implanted with electrodes, receiving 0, 3, 15, and 45 electrical stimuli. RESULTS: We found that such rats suffering a major number of stimuli showed the highest amount of marks assessed. CONCLUSION: We concluded that there is a higher activity of the Wnt/ß-Catenin pathway associated with increased number of stimuli may be related with the presence of apoptosis in the cerebellum treated with amygdala kindling. In this way, we suggest this pathway as one of the mechanisms by which cerebellar neurons death in generalized seizures.


Assuntos
Apoptose/fisiologia , Cerebelo/fisiopatologia , Excitação Neurológica/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Caspase 3/metabolismo , Cerebelo/metabolismo , Cerebelo/fisiologia , Ciclina D3/metabolismo , Estimulação Elétrica , Eletrodos Implantados , Excitação Neurológica/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células de Purkinje/metabolismo , Ratos , Convulsões/metabolismo
10.
Chem Biol Drug Des ; 89(4): 529-537, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27696716

RESUMO

Phenanthroline derivatives have been reported as potential bioactive compounds because of their ability to interact with DNA. To evaluate the antiproliferative effect of bis(acetylacetonate-k2 O,O)(1,10-phenanthroline-k2 N,N)Zn(II) or Zn(acac)2 (phen) complex, the compound was obtained in a simple manner and further characterized to determine crystal structure, thermal behavior, morphology, and spectroscopic properties. The structure of the complex was confirmed by X-ray single structure as well as by 1H and 13C nuclear magnetic resonance (NMR) in dmso-d6 (dimethyl sulfoxide) solution and in the solid state by 13C CP/MAS. Although preparation of this compound has been described previously, there are no reports on its biological activity; here, we assessed its antiproliferative effect on fibroblasts, A253, FaDu, Cal-27, RH-30, RD, U-373, C6, A-549, MDA-MB-231, and MCF-7 cancer cell lines at different doses (50-100 and 150 µg/ml). The cell viability was determined by MTT assay and high activity was observed for the most of the cell lines, and TUNEL results showed the induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Fenantrolinas/química , Zinco/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Estrutura Molecular , Fenantrolinas/farmacologia , Difração de Pó , Espectrofotometria Infravermelho
11.
CNS Neurol Disord Drug Targets ; 15(6): 723-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26996170

RESUMO

The single feature of all malformations in cortical development is the clinical association with epilepsy. It has been proven that Sox-1 expression is essential during neurodevelopment and it is reported that Sox-1 knockout mice present spontaneous generalized seizures. Particularly in cerebellum, Sox-1 plays a key role in the Bergmann´s glia (BG) function, which allows the correct function of the Purkinje cells (PC). The targets of PC are the dentate and interpositus nuclei, which form the main cerebellar efferents involved in the physiopathology of epilepsy. Here we present the Sox-1 expression in cerebellum of rats during electric amygdala-kindling. We obtained seizures and once they had 3, 15 and 45 electric stimuli, the animals were sacrificed; the cerebellum was processed for inmunohistochemistry and Western blot analysis was performed to determine Sox-1 expression. Liquid chromatography was performed to examine gammaaminobutyric acid (GABA) and glutamate concentration. According to the literature, a progressive increase was observed in the electrographic and behavioral parameters. We found that Sox-1 expression in 15 and 45-stimuli groups had a statistically significant decrease as compared with controls, while the 3-stimuli group was similar to the control group. The concentration of glutamate was increased in rats with 45 stimuli. We can conclude that Sox-1 expression decreases as the number of seizures increases, and this is probably due to an altered glutamate regulation by a dysfunctional BG. In this way, we can suggest this mechanism as a one possible explanation of how the cerebellum participates in the pathophysiology of epilepsy.


Assuntos
Cerebelo/metabolismo , Epilepsia Generalizada/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Convulsões/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Western Blotting , Cerebelo/patologia , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Progressão da Doença , Estimulação Elétrica , Epilepsia Generalizada/patologia , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Excitação Neurológica/metabolismo , Excitação Neurológica/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Convulsões/patologia , Ácido gama-Aminobutírico/metabolismo
12.
J Neurol Sci ; 351(1-2): 78-87, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25818676

RESUMO

Thalidomide has shown protective effects in different models of ischemia/reperfusion damage. To elucidate the mechanisms of such protection, this study assessed the effects of thalidomide on the oxidative stress and inflammatory response induced by ischemia/reperfusion episodes in rats. Rats underwent middle cerebral artery occlusion (MCAO) for 2hours. All animals were sacrificed after different reperfusion times. Rats were administered either DMSO or thalidomide (20mg/kg (i.p.)) at different times before or during reperfusion: 1) 1h before reperfusion; the infarct area was measured 2h after reperfusion. 2) 10min before reperfusion and 80min after reperfusion; the infarct area was measured 24h after reperfusion; and 3) 10min before reperfusion and 1h, 24h, 48h, and 68h after reperfusion; the infarct area was measured 72h after reperfusion. Thalidomide reduced the infarct area 24h and 72h after MCAO, and decreased the neurological deficit in all groups with respect to controls. Thalidomide also lowered significantly the number of TUNEL-positive cells, levels of Bax, caspase-3, lipoperoxidation, and pro-inflammatory cytokines, and increased the levels of SOD1, Bcl-2 and pAkt. These results show that thalidomide has neuroprotective effects, apparently due to its anti-apoptotic, anti-oxidant, and anti-inflammatory effects.


Assuntos
Inibidores da Angiogênese/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Talidomida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Neurotoxicology ; 47: 82-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724264

RESUMO

Thalidomide is a sedative with unique pharmacological properties; studies on epilepsy and brain ischemia have shown intense neuroprotective effects. We analyzed the effect of thalidomide treatment on the neurotoxicity caused by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP) in mice. Thalidomide was administered at two times; before and after the exposure to MPTP. In both circumstances thalidomide improved the neurotoxicity induced by MPTP as seen by a significant raise of the striatal contents of dopamine and simultaneous decrease of monoamine-oxidase-B (MAO-B). These results indicate that in the experimental model of Parkinson's disease the administration of thalidomide improves the functional damage on the nigrostriatal cell substratum as seen by the production of dopamine. This neuroprotective effect seems to be mediated by inhibition of excitotoxicity. Our results suggest that thalidomide could be investigated as potential adjuvant therapy for Parkinson's disease.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/metabolismo , Substância Negra/efeitos dos fármacos , Talidomida/administração & dosagem , Animais , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Substância Negra/enzimologia , Substância Negra/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-23983787

RESUMO

Ginkgo biloba extracts have long been used in Chinese traditional medicine for hundreds of years. The most significant extract obtained from Ginkgo biloba leaves has been EGb 761, a widely used phytopharmaceutical product in Europe. EGb 761 is a well-defined mixture of active compounds, which contains two main active substances: flavonoid glycosides (24-26%) and terpene lactones (6-8%). These compounds have shown antiapoptotic effects through the protection of mitochondrial membrane integrity, inhibition of mitochondrial cytochrome c release, enhancement of antiapoptotic protein transcription, and reduction of caspase transcription and DNA fragmentation. Other effects include the reduction of oxidative stress (which has been related to the occurrence of vascular, degenerative, and proliferative diseases), coupled to strong induction of phase II-detoxifying and cellular defense enzymes by Nrf2/ARE activation, in addition to the modulation of transcription factors, such as CREB, HIF-1 α , NF- κ B, AP-1, and p53, involved in the apoptosis process. This work reviews experimental results about the antiapoptotic effects induced by the standardized extract of Ginkgo biloba leaves (EGb 761).

15.
Artigo em Inglês | MEDLINE | ID: mdl-23970935

RESUMO

Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

16.
BMC Cancer ; 12: 156, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22540380

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate. METHODS: The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia), a copper compound, on rat malignant glioma C6 cells was investigated. RESULTS: Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS) and increased activity of c-jun NH(2)-terminal kinase (JNK). The presence of 3-methyladenine (as selective autophagy inhibitor) increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine) decreased apoptosis, autophagy and JNK activity. Moreover, the JNK -specific inhibitor SP600125 prevented Cas III-ia-induced cell death. CONCLUSIONS: Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS -dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glioma/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Catalase/metabolismo , Linhagem Celular Tumoral , Cobre , Ativação Enzimática/efeitos dos fármacos , Humanos , Ratos , Superóxido Dismutase/metabolismo
17.
Biometals ; 21(1): 17-28, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17390215

RESUMO

The aim of this study was to evaluate the in vitro and in vivo effects of the new chemotherapy agent Casiopeina III-ia [(4,4'-dimethyl-2,2'-bipiridine)(acetylacetonate) Copper (II) nitrate] on HCT-15 (p53-/-) colon cellular line. In vitro, the drug reduced the viability and induced necrosis and apoptosis in a dose dependent manner, without affecting cell cycle phases. Apoptosis was related to Bax increasing levels, suggesting a caspase-dependent mechanism of death, as verified by nucleosomal fragmentation of DNA. In vivo, the antitumor activity of Casiopeina III-ia was tested in HCT-15 cells transplanted to nude mice. In this study we will show that the novel antineoplastic agent Casiopeina III-ia is active on this colon tumor line, setting out as a good candidate for the treatment of colon tumors refractory to chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias do Colo/prevenção & controle , Compostos Organometálicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Nus , Compostos Organometálicos/química , Proteína X Associada a bcl-2/metabolismo
18.
Mol Carcinog ; 46(7): 524-33, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17393424

RESUMO

Cyclohexanol is a basic industrial chemical widely used because of its versatility as an industrial solvent. No studies have been conducted to evaluate the carcinogenic/co-carcinogenic hazards associated with cyclohexanol exposure. In male Fisher 344 rats liver preneoplastic lesions were induced by N-nitrosodiethylamine (150 mg/Kg) i.p., followed by the tumor promoter 2-acetylaminofluorene (2-AAF: 20 mg/kg) orally administered on three consecutive days before partial hepatectomy. The cyclohexanol administration in this hepatocarcinogenesis assay revealed that it has a strong tumor co-promoter potential. There is clear evidence that oxidative stress and the CYP2E1 are components of carcinogenesis. Although no changes in the lipid peroxidation levels were observed between treated and untreated animals, a significant increase in CYP2E1 expression was observed when cyclohexanol was administered 24 h after the last 2-AAF dose. On the other hand, levels of the proliferation markers PCNA and Ki-67 were not increased after treatment with cyclohexanol, but a marked downregulation of the Bax proapoptotic protein was found exclusively in mitochondrial extracts of animals treated with cyclohexanol. This study represents the first report of the ability of cyclohexanol-induced lesions, when administered simultaneously with 2-AAF, to potentiate the development of preneoplastic liver.


Assuntos
Alquilantes/toxicidade , Cicloexanóis/toxicidade , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas Experimentais/induzido quimicamente , Fígado/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Peroxidação de Lipídeos , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Endogâmicos F344
19.
World J Gastroenterol ; 12(12): 1895-904, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16609996

RESUMO

AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosyl-methionine (AdoMet). METHODS: Primary hepatocyte cultures were pretreated with 100 micromol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays. JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by Ellman's method and reactive oxygen species (ROS) generation by cell cytometry. RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decrease in ethanol-induced apoptosis (P< 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity, and prevented cytochrome c release and pro-caspase 3 cleavage. CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.


Assuntos
Apoptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , S-Adenosilmetionina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antracenos/farmacologia , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Etanol/farmacologia , Glutationa/metabolismo , Hepatócitos/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Mitocôndrias , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
20.
Neoplasia ; 7(6): 563-74, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16036107

RESUMO

In this work, we investigated the effects of Casiopeina II-gly (Cas IIgly)--a new copper compound exhibiting antineoplastic activity--on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas IIgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS) formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas IIgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF) and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-L-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas IIgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas IIgly. ROS formation induced by Cas IIgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas IIgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas IIgly for the treatment of malignant gliomas.


Assuntos
Caspases/metabolismo , Cobre/farmacologia , Glioma/tratamento farmacológico , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Acetilcisteína/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Antioxidantes/farmacologia , Apoptose , Western Blotting , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/metabolismo , Fragmentação do DNA , Relação Dose-Resposta a Droga , Técnicas In Vitro , Peroxidação de Lipídeos , Potenciais da Membrana , Mitocôndrias/patologia , Nucleossomos/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...