Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxicol Sci ; 191(2): 400-413, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36515490

RESUMO

Administration of a novel and selective small molecule integrin αvß6 inhibitor, MORF-627, to young cynomolgus monkeys for 28 days resulted in the rapid induction of epithelial proliferative changes in the urinary bladder of 2 animals, in the absence of test agent genotoxicity. Microscopic findings included suburothelial infiltration by irregular nests and/or trabeculae of epithelial cells, variable cytologic atypia, and high mitotic rate, without invasion into the tunica muscularis. Morphologic features and patterns of tumor growth were consistent with a diagnosis of early-stage invasive urothelial carcinoma. Ki67 immunohistochemistry demonstrated diffusely increased epithelial proliferation in the urinary bladder of several monkeys, including those with tumors, and αvß6 was expressed in some epithelial tissues, including urinary bladder, in monkeys and humans. Spontaneous urothelial carcinomas are extremely unusual in young healthy monkeys, suggesting a direct link of the finding to the test agent. Inhibition of integrin αvß6 is intended to locally and selectively block transforming growth factor beta (TGF-ß) signaling, which is implicated in epithelial proliferative disorders. Subsequent in vitro studies using a panel of integrin αvß6 inhibitors in human bladder epithelial cells replicated the increased urothelial proliferation observed in monkeys and was reversed through exogenous application of TGF-ß. Moreover, analysis of in vivo models of liver and lung fibrosis revealed evidence of epithelial hyperplasia and cell cycle dysregulation in mice treated with integrin αvß6 or TGF-ß receptor I inhibitors. The cumulative evidence suggests a direct link between integrin αvß6 inhibition and decreased TGF-ß signaling in the local bladder environment, with implications for epithelial proliferation and carcinogenesis.


Assuntos
Carcinoma de Células de Transição , Integrinas , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinoma de Células de Transição/induzido quimicamente , Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Macaca fascicularis , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente
2.
Cancer Res ; 81(12): 3402-3414, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33687950

RESUMO

TRAIL can activate cell surface death receptors, resulting in potent tumor cell death via induction of the extrinsic apoptosis pathway. Eftozanermin alfa (ABBV-621) is a second generation TRAIL receptor agonist engineered as an IgG1-Fc mutant backbone linked to two sets of trimeric native single-chain TRAIL receptor binding domain monomers. This hexavalent agonistic fusion protein binds to the death-inducing DR4 and DR5 receptors with nanomolar affinity to drive on-target biological activity with enhanced caspase-8 aggregation and death-inducing signaling complex formation independent of FcγR-mediated cross-linking, and without clinical signs or pathologic evidence of toxicity in nonrodent species. ABBV-621 induced cell death in approximately 36% (45/126) of solid cancer cell lines in vitro at subnanomolar concentrations. An in vivo patient-derived xenograft (PDX) screen of ABBV-621 activity across 15 different tumor indications resulted in an overall response (OR) of 29% (47/162). Although DR4 (TNFSFR10A) and/or DR5 (TNFSFR10B) expression levels did not predict the level of response to ABBV-621 activity in vivo, KRAS mutations were associated with elevated TNFSFR10A and TNFSFR10B and were enriched in ABBV-621-responsive colorectal carcinoma PDX models. To build upon the OR of ABBV-621 monotherapy in colorectal cancer (45%; 10/22) and pancreatic cancer (35%; 7/20), we subsequently demonstrated that inherent resistance to ABBV-621 treatment could be overcome in combination with chemotherapeutics or with selective inhibitors of BCL-XL. In summary, these data provide a preclinical rationale for the ongoing phase 1 clinical trial (NCT03082209) evaluating the activity of ABBV-621 in patients with cancer. SIGNIFICANCE: This study describes the activity of a hexavalent TRAIL-receptor agonistic fusion protein in preclinical models of solid tumors that mechanistically distinguishes this molecular entity from other TRAIL-based therapeutics.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Fator IX/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Regul Toxicol Pharmacol ; 110: 104524, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734179

RESUMO

Regulatory Guidance documents ICH Q3A (R2) and ICH Q3B (R2) state that "impurities that are also significant metabolites present in animal and/or human studies are generally considered qualified". However, no guidance is provided regarding data requirements for qualification, nor is a definition of the term "significant metabolite" provided. An opportunity is provided to define those categories and potentially avoid separate toxicity studies to qualify impurities. This can reduce cost, animal use and time, and avoid delays in drug development progression. If the concentration or amount of a metabolite, in animals or human, is similar to that of the known, structurally identical impurity (arising from the administered test material), the qualification of the impurity on the grounds of it also being a metabolite is justified. We propose two complementary approaches to support conclusions to this effect: 1) demonstrate that the impurity is formed by metabolism in animals and/or man, based preferably on plasma exposures or, alternatively, amounts excreted in urine, and, where appropriate, 2) show that animal exposure to (or amount of) the impurity/metabolite is equal or greater in animals than in humans. An important factor of both assessments is the maximum theoretical concentration (or amount) (MTC or MTA) of the impurity/metabolite achievable from the administered dose and recommendations on the estimation of the MTC and MTA are presented.


Assuntos
Contaminação de Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Humanos , Testes de Toxicidade
4.
Toxicol Pathol ; 39(4): 716-44, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666103

RESUMO

Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safety.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Testes de Mutagenicidade/métodos , Animais , Testes de Carcinogenicidade/normas , Carcinógenos/normas , Bases de Dados Factuais , Árvores de Decisões , Modelos Animais de Doenças , Estudos de Avaliação como Assunto , Feminino , Guias como Assunto , Humanos , Imunossupressores , Masculino , Camundongos , Camundongos Transgênicos , Testes de Mutagenicidade/normas , Neoplasias/induzido quimicamente , Ratos , Ratos Endogâmicos F344 , Fatores de Risco , Estatística como Assunto , Testes de Toxicidade Crônica
5.
Toxicol Sci ; 103(1): 28-34, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18281259

RESUMO

The Critical Path Institute recently established the Predictive Safety Testing Consortium, a collaboration between several companies and the U.S. Food and Drug Administration, aimed at evaluating and qualifying biomarkers for a variety of toxicological endpoints. The Carcinogenicity Working Group of the Predictive Safety Testing Consortium has concentrated on sharing data to test the predictivity of two published hepatic gene expression signatures, including the signature by Fielden et al. (2007, Toxicol. Sci. 99, 90-100) for predicting nongenotoxic hepatocarcinogens, and the signature by Nie et al. (2006, Mol. Carcinog. 45, 914-933) for predicting nongenotoxic carcinogens. Although not a rigorous prospective validation exercise, the consortium approach created an opportunity to perform a meta-analysis to evaluate microarray data from short-term rat studies on over 150 compounds. Despite significant differences in study designs and microarray platforms between laboratories, the signatures proved to be relatively robust and more accurate than expected by chance. The accuracy of the Fielden et al. signature was between 63 and 69%, whereas the accuracy of the Nie et al. signature was between 55 and 64%. As expected, the predictivity was reduced relative to internal validation estimates reported under identical test conditions. Although the signatures were not deemed suitable for use in regulatory decision making, they were deemed worthwhile in the early assessment of drugs to aid decision making in drug development. These results have prompted additional efforts to rederive and evaluate a QPCR-based signature using these samples. When combined with a standardized test procedure and prospective interlaboratory validation, the accuracy and potential utility in preclinical applications can be ascertained.


Assuntos
Testes de Carcinogenicidade/métodos , Genômica , Animais , Perfilação da Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...