Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Chromatogr A ; 1715: 464597, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183784

RESUMO

Ion mobility (IM) separations, especially when combined with mass spectrometry, offer the opportunity for the rapid analysis and characterization of mixtures. However, the limited resolution afforded by many IM systems means that in practice applications may be limited. Here we have employed an IM separation on a high-resolution cyclic IM device with MS/MS to separate and characterize mixtures of sulfated isomers of tyrosine and associated metabolites containing multiple sulfated isoforms present in reaction mixtures. The cIMS device allowed ions, not resolved using a single pass, to be subjected to multiple passes, enabling the resolution of those with similar collision cross sections (CCS). Predicted single pass CCS values calculated for the isomers likely to be present in these mixtures showed only small differences between them, ranging between of between 0.1 - 0.7 % depending on structure. These small differences highlight the high degree of mobility resolution required for separating the isomers. Experimentally different isoforms of tyrosine sulfate and sulfated tyrosine metabolites could be sufficiently resolved via multipass separations (3-35 passes). This degree of separation provided resolving powers of up to 384 CCS/ΔCCS for sulfated dopamine which enabled good MS/MS spectra to be generated. In human urine the presence of a single sulfated form of tyrosine was detected and identified as the O-sulfate after 3 passes based on the synthetic standard. Of the other tyrosine-related sulfates for which synthetic standards had been prepared only dopamine sulfate was detected in this sample.


Assuntos
Sulfatos , Espectrometria de Massas em Tandem , Humanos , Dopamina , Isomerismo , Isoformas de Proteínas
2.
J Chromatogr A ; 1714: 464552, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113579

RESUMO

The untargeted global profiling of endogenous metabolites and lipids has the potential to increase knowledge and understanding in many areas of biology. LC-MS/MS is a key technology for such analyses however, several different LC methodologies, using different mobile phase compositions, are required to cover the diversity in polarity and analyte structure encountered in biological samples. Most notably many lipid screening methods make use of isopropanol (IPA) as a major component of mobile phases employed for comprehensive lipidomic profiling. In order to increase laboratory efficiency, and minimize opportunities for errors, a suite of methods, based on a single acetonitrile (ACN)-aqueous buffer mobile phase combination, has been developed. This mobile phase can be used for hydrophobic interaction liquid chromatography on an amide stationary phase (for polar analytes), reversed-phase (RP) LC analysis on a C8 stationary phase (for moderately polar-non-polar compounds) and RPLC using a CSH phenyl-hexyl bonded column (for lipids). All of these sub 10 minute separations had good throughput and reproducibility with CV's of analyte response <25 % whilst eliminating the need for complex mobile phase preparation and the use of IPA as an organic modifier for lipidomics. Advantages of removing IPA and replacing it with the ACN-based method were a 58 % increase in peak capacity for lipids, with improved resolution for the di- and triglycerides and cholesterol esters compared to current methods. Compared to the IPA-containing solvent system the ACN-based mobile phase also resulted in a 61 % increase in lipid feature detection. The utility of this "universal" mobile phase approach was demonstrated by its application to a rat toxicology study investigating the consequences of methapyrilene administration through on the endogenous metabolite profiles of plasma and urine. Methapyrilene and its metabolites were also profiled in these samples.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metapirileno , Ratos , Animais , Cromatografia Líquida/métodos , Lipidômica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Lipídeos
3.
Anal Bioanal Chem ; 415(7): 1357-1369, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705732

RESUMO

Despite its critical role in neurodevelopment and brain function, vitamin D (vit-D) homeostasis, metabolism, and kinetics within the central nervous system remain largely undetermined. Thus, it is of critical importance to establish an accurate, highly sensitive, and reproducible method to quantitate vit-D in brain tissue. Here, we present a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method and for the first time, demonstrate detection of seven major vit-D metabolites in brain tissues of C57BL/6J wild-type mice, namely 1,25(OH)2D3, 3-epi-1,25(OH)2D3, 1,25(OH)2D2, 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 24,25(OH)2D2. Chromatographic separation was achieved on a pentaflurophenyl column with 3 mM ammonium formate water/methanol [A] and 3 mM ammonium formate methanol/isopropanol [B] mobile phase components. Detection was by positive ion electrospray tandem mass spectrometry with the EVOQ elite triple quadrupole mass spectrometer with an Advance ultra-high-performance liquid chromatograph and online extraction system. Calibration standards of each metabolite prepared in brain matrices were used to validate the detection range, precision, accuracy, and recovery. Isotopically labelled analogues, 1,25(OH)2D3-d3, 25(OH)D3-c5, and 24,25(OH)2D3-d6, served as the internal standards for the closest molecular-related metabolite in all measurements. Standards between 1 fg/mL and 10 ng/mL were injected with a resulting linear range between 0.001 and 1 ng, with an LLOD and LLOQ of 1 pg/mL and 12.5 pg/mL, respectively. The intra-/inter-day precision and accuracy for measuring brain vit-D metabolites ranged between 0.12-11.53% and 0.28-9.11%, respectively. Recovery in acetonitrile ranged between 99.09 and 106.92% for all metabolites. Collectively, the sensitivity and efficiency of our method supersedes previously reported protocols used to measure vit-D and to our knowledge, the first protocol to reveal the abundance of 25(OH)D2, 1,25(OH)D2, and 24,25(OH)2D2, in brain tissue of any species. This technique may be important in supporting the future advancement of pre-clinical research into the function of vit-D in neurophysiological and neuropsychiatric disorders, and neurodegeneration.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Animais , Camundongos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Camundongos Endogâmicos C57BL , Vitamina D , Vitaminas , Encéfalo
4.
Respir Res ; 22(1): 105, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836757

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear. METHODS: In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification. RESULTS: Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue. CONCLUSION: This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipidômica , Sistema de Registros , Idoso , Cromatografia Líquida , Progressão da Doença , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Masculino , Espectrometria de Massas
5.
J Pharm Biomed Anal ; 200: 114076, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892395

RESUMO

The detection, identification and quantification of drug metabolites plays a key role in drug discovery and development. Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the primary technology for these studies due to its sensitivity and specificity. However, the presence of transition metals in the chromatography system and columns can result in non-specific and unwanted interactions with the drug and/or its metabolites, via electron-pair donation, leading to poor chromatography and analyte loss. The use of a hybrid organic/inorganic surface applied to the metal surfaces of the chromatography system and column has been demonstrated to reduce or eliminate these effects. When employed for the analysis of mouse urine, derived from the oral dosing of mice with the EGFR inhibitor gefitinib, we observed more symmetrical LC peaks. This resulted in a 33 % improvement in peak capacity for a 10 min reversed - phase gradient separation, a two-fold increase in MS response, cleaner MS spectra and improved peak response reproducibility. This hybrid surface barrier appears to offer significant advantages in the analysis of low-concentration metabolites, potentially facilitating the accurate determination of the elimination phase of the pharmacokinetic (PK) curve and detection of drug metabolites in microdosing or microsampling studies.


Assuntos
Preparações Farmacêuticas , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Gefitinibe , Espectrometria de Massas , Camundongos , Reprodutibilidade dos Testes , Tecnologia
6.
Proteomics Clin Appl ; 15(2-3): e2000039, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33580915

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterised by airway inflammation and progressive airflow limitation, whereas idiopathic pulmonary fibrosis (IPF) is characterised by a restrictive pattern due to fibrosis and impaired gas exchange. We undertook metabolomic analysis of blood samples in IPF, COPD and healthy controls (HC) to determine differences in circulating molecules and identify novel pathogenic pathways. An untargeted metabolomics using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) was performed to profile plasma of patients with COPD (n = 21), and IPF (n = 24) in comparison to plasma from healthy controls (HC; n = 20). The most significant features were identified using multiple database matching. One-way ANOVA and variable importance in projection (VIP) scores were also used to highlight metabolites that influence the specific disease groups. Non-polar metabolites such as fatty acids (FA) and membrane lipids were well resolved and a total of 4805 features were identified. The most prominent metabolite composition differences in lipid mediators identified at ∼2-3 fold higher in both diseases compared to HC were palmitoleic acid, oleic acid and linoleic acid; and dihydrotestosterone was lower in both diseases. We demonstrated that COPD and IPF were characterised by systemic changes in lipid constituents such as essential FA sampled from circulating plasma.


Assuntos
Fibrose Pulmonar Idiopática
7.
Sci Rep ; 10(1): 9255, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518313

RESUMO

Human milk provides the infant with the essential nutritive and non-nutritive factors required for health, growth and development. The human milk lipidome is complex, but comprises predominantly triacylglycerides. Historically, the fatty acid profile of the entire human milk lipidome has been investigated, and many relationships have been identified between infant health and fatty acids. Most of these fatty acids are, however, delivered to the infant as triacylglycerides. Using liquid chromatography-ion mobility-mass spectrometry, the objective of this study was to characterise the triacylglyceride profile of human milk and elucidate relationships between the triacylglyceride profile and infant outcomes in a cohort of 10 exclusively breastfeeding woman-infant dyads. 205 triacylglycerides were identified, including 98 previously not reported in human milk. The dose of specific triacylglycerides differed in relation to infant health, such as lauric acid containing TAGs, which were delivered in significantly higher dose to healthy infants compared to unwell infants.


Assuntos
Lipidômica/métodos , Espectrometria de Massas/métodos , Leite Humano/química , Triglicerídeos/análise , Adulto , Aleitamento Materno , Cromatografia Líquida , Ingestão de Alimentos , Feminino , Humanos , Lactente , Masculino , Fluxo de Trabalho
8.
J Vis Exp ; (157)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32225158

RESUMO

Understanding the interactions between genes, the environment and management in agricultural practice could allow more accurate prediction and management of product yield and quality. Metabolomics data provides a read-out of these interactions at a given moment in time and is informative of an organism's biochemical status. Further, individual metabolites or panels of metabolites can be used as precise biomarkers for yield and quality prediction and management. The plant metabolome is predicted to contain thousands of small molecules with varied physicochemical properties that provide an opportunity for a biochemical insight into physiological traits and biomarker discovery. To exploit this, a key aim for metabolomics researchers is to capture as much of the physicochemical diversity as possible within a single analysis. Here we present a liquid chromatography-mass spectrometry-based untargeted metabolomics method for the analysis of field-grown wheat grain. The method uses the liquid chromatograph quaternary solvent manager to introduce a third mobile phase and combines a traditional reversed-phase gradient with a lipid-amenable gradient. Grain preparation, metabolite extraction, instrumental analysis and data processing workflows are described in detail. Good mass accuracy and signal reproducibility were observed, and the method yielded approximately 500 biologically relevant features per ionization mode. Further, significantly different metabolite and lipid feature signals between wheat varieties were determined.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Triticum/química , Reprodutibilidade dos Testes
9.
Respirology ; 25(2): 139-148, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30907495

RESUMO

Chronic lung diseases represent a significant global burden. Their increasing incidence and complexity render a comprehensive, multidisciplinary and personalized approach to each patient, critically important. Most recently, unique biochemical pathways and disease markers have been identified through large-scale metabolomic studies. Metabolomics is the study of metabolic pathways and the measurement of unique biomolecules in a living system. Analysing samples from different compartments such as bronchoalveolar lavage fluid (BALF) and plasma has proven useful for the characterization of a number of pathological conditions and offers promise as a clinical tool. For example, several studies using mass spectrometry (MS) have shown alterations in the sphingolipid metabolism of chronic obstructive pulmonary disease (COPD) sufferers. In this article, we present a practical review of the application of metabolomics to the study of chronic lung diseases (CLD): COPD, idiopathic pulmonary fibrosis (IPF) and asthma. The insights, which the analytical strategies employed in metabolomics, have provided to the dissection of the biochemistry of CLD and future clinical biomarkers are explored.


Assuntos
Asma/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Metabolômica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Humanos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas
10.
J Chromatogr A ; 1611: 460597, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31619360

RESUMO

The incorporation of ion mobility (IM) into LC-MS analysis has been demonstrated to result in the generation of superior quality MS and MS/MS spectral data as well as providing enhanced resolution in the IM dimension based on lipid class. Here a sub 4 min microbore LC-ion mobility-accurate mass MS (LC-IM-MS) method has been developed for the rapid, profiling of lipids in biological fluids. The method was scaled directly from a conventional, 12  min, LC-MS analysis maintaining the chromatographic performance and lipid separation observed in the longer methodology giving a 75% saving in mobile phase consumption and analysis time. Because of the additional dimension of separation provided by IM, improvements in mass spectral quality from the increased resolution of co-eluting species were also seen when compared to the same separation without IM, thus aiding the identification of target lipids. When applied to human plasma samples some 5037 (positive ESI) and 2020 (negative ESI) mass/retention time features were detected following adduct deconvolution and, of these, 3727 and 800 of those present in the pooled plasma QC samples had a CV of below 30% for positive and negative ESI modes respectively. The method was applied to the analysis of a pilot set of commercially sourced breast cancer plasma samples enabling the differentiation of samples from healthy controls and patients based on their lipid phenotypes. Analysis of the resulting data showed that phosphatidylcholines, triglycerides and diglycerides exhibited lower expression and phosphatidylserine showed increased expression in the breast cancer samples compared to those of healthy subjects. The coefficients of variation, determined by reference to the QC data, for all of the features identified as potential markers of disease, were 6% or less.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/sangue , Espectrometria de Massas em Tandem/métodos , Estudos de Casos e Controles , Análise Discriminante , Feminino , Humanos , Espectrometria de Mobilidade Iônica , Análise dos Mínimos Quadrados , Metaboloma , Fosfatidilcolinas , Análise de Componente Principal
11.
Sci Rep ; 9(1): 19400, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852911

RESUMO

Hepcidins are an evolutionarily conserved class of liver-expressed peptide, from which the twenty-five amino acid hormone, hepcidin-25 (herein hepcidin), has gained significant notoriety as the master regulator of iron homeostasis in mammals. Hepcidin maintains iron homeostasis by controlling the dietary absorption of iron and the mechanisms of recycling cellular iron stores. With the physiological significance of this hormone well established, it has emerged as an informative biomarker. In a comparison of the genome, transcriptome and peptidome of Canis lupis familiaris, we reveal the size of the hepcidin peptide in the canine, previous reports of which were contradictory to the evolutionary conservation predicted by genome annotation. Here, measurement of the peptide by mass spectrometry, following isolation from greyhound blood serum, revealed an amino acid sequence and peptide mass, differing from all accounts to date, yet demonstrating perfect sequence identity to that of the greater Canidae lineage of the Carnivora. Importantly, in the greyhound, the measured hepcidin peptide showed a similar temporal pattern to total serum iron, consistent with our understanding of hepcidin regulating iron homeostasis, in agreement with human diagnostics, and providing added translational evidence of the measured peptide being the iron regulatory hormone of the Canidae.


Assuntos
Evolução Molecular , Hepcidinas/genética , Ferro/metabolismo , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Cães , Hepcidinas/metabolismo , Homeostase/genética , Humanos , Mamíferos
13.
J Pharm Biomed Anal ; 176: 112834, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31472365

RESUMO

Use of herbal medicines and supplements by consumers to prevent or treat disease, particularly chronic conditions continues to grow, leading to increased awareness of the minimal regulation standards in many countries. Fraudulent, adulterated and contaminated herbal and traditional medicines and dietary supplements are a risk to consumer health, with adverse effects and events including overdose, drug-herb interactions and hospitalisation. The scope of the risk has been difficult to determine, prompting calls for new approaches, such as the combination of DNA metabarcoding and mass spectrometry used in this study. Here we show that nearly 50% of products tested had contamination issues, in terms of DNA, chemical composition or both. Two samples were clear cases of pharmaceutical adulteration, including a combination of paracetamol and chlorpheniramine in one product and trace amounts of buclizine, a drug no longer in use in Australia, in another. Other issues include the undeclared presence of stimulants such as caffeine, synephrine or ephedrine. DNA data highlighted potential allergy concerns (nuts, wheat), presence of potential toxins (Neem oil) and animal ingredients (reindeer, frog, shrew), and possible substitution of bird cartilage in place of shark. Only 21% of the tested products were able to have at least one ingredient corroborated by DNA sequencing. This study demonstrates that, despite current monitoring approaches, contaminated and adulterated products are still reaching the consumer. We suggest that a better solution is stronger pre-market evaluation, using techniques such as that outlined in this study.


Assuntos
Contaminação de Medicamentos/prevenção & controle , Compostos Fitoquímicos/análise , Fitoterapia/normas , Controle de Qualidade , Acetaminofen/análise , Clorfeniramina/análise , Suplementos Nutricionais/análise , Suplementos Nutricionais/normas , Humanos , Espectrometria de Massas/métodos , Tipagem Molecular/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/normas , Fitoterapia/métodos , Análise de Sequência de DNA
14.
J Am Soc Mass Spectrom ; 30(9): 1713-1719, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31209791

RESUMO

Global consumption of complementary and alternative medicines, including herbal medicines, has increased substantially, and recent reports of adulteration demonstrate the need for high throughput and extensive pharmacovigilance to ensure product safety and quality. Three different standard reference materials and five previously analyzed herbal medicines have been used as a proof of concept for the application of adulteration/contamination screening using a Direct Sample Analysis (DSA) ion source with TOF MS on the Perkin Elmer AxION 2 TOF. This technique offers the advantages of minimum sample preparation, rapid analysis, and mass accuracies of 5 ppm. The DSA TOF analysis correlates well with the previous analysis on the initial sample set (which found undeclared herbal ingredients), with the added advantage of detecting previously untargeted compounds, including species-specific flavonoids and alkaloids. The rapid analysis using the DSA-TOF facilitates screening for hundreds of compounds in minutes with minimal sample preparation, generating a comprehensive profile for each sample. Graphical Abstract.


Assuntos
Contaminação de Medicamentos , Espectrometria de Massas/métodos , Preparações de Plantas/análise , Camellia sinensis/química , Cápsulas/análise , Terapias Complementares , Ginkgo biloba/química , Espectrometria de Massas/instrumentação , Espectrometria de Massas/normas , Padrões de Referência , Comprimidos/análise , Chá/química , Vitaminas/análise
15.
Methods Mol Biol ; 1978: 3-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119653

RESUMO

Metabolomics is an analytical technique that investigates the small molecules present within a biological system. Metabolomics of cultured cells allows profiling of the metabolic chemicals involved in a cell type-specific system and the response of that metabolome to external challenges, such as change in environment or exposure to drugs or toxins. The numerous benefits of in vitro metabolomics include a much greater control of external variables and reduced ethical concerns. There is potential for metabolomics of mammalian cells to uncover new information on mechanisms of action for drugs or toxins or to provide a more sensitive, human-specific early risk assessment in drug development or toxicology investigations. One way to achieve stronger biological outcomes from metabolomic data is via the use of these mammalian cultured cell models, particularly in a high-throughput context. With the sensitivity and quantity of data that metabolomics is able to provide, it is important to ensure that the sampling techniques have minimal interference when it comes to interpretation of any observed shifts in the metabolite profile. Here we describe a sampling procedure designed to ensure that the effects seen in metabolomic analyses are explained fully by the experimental factor and not other routine culture-specific activities.


Assuntos
Adesão Celular/genética , Metaboloma/genética , Metabolômica/métodos , Manejo de Espécimes , Animais , Linhagem Celular , Cromatografia Líquida , Humanos , Mamíferos
16.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 25-32, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31005771

RESUMO

Polycystic kidney disease (PKD) encompasses a spectrum of inherited disorders that lead to end-stage renal disease (ESRD). There is no cure for PKD and current treatment options are limited to renal replacement therapy and transplantation. A better understanding of the pathobiology of PKD is needed for the development of new, less invasive treatments. The Lewis Polycystic Kidney (LPK) rat phenotype has been characterized and classified as a model of nephronophthisis (NPHP9, caused by mutation of the Nek8 gene) for which polycystic kidneys are one of the main pathologic features. The aim of this study was to use a GC-MS-based untargeted metabolomics approach to determine key biochemical changes in kidney and liver tissue of the LPK rat. Tissues from 16-week old LPK (n = 10) and Lewis age- and sex-matched control animals (n = 11) were used. Principal component analysis (PCA) distinguished signal corrected metabolite profiles from Lewis and LPK rats for kidney (PC-1 77%) and liver (PC-1 46%) tissue. There were marked differences in the metabolite profiles of the kidney tissues with 122 deconvoluted features significantly different between the LPK and Lewis strains. The metabolite profiles were less marked between strains for liver samples with 30 features significantly different. Five biochemical pathways showed three or more significantly altered metabolites: transcription/translation, arginine and proline metabolism, alpha-linolenic and linoleic acid metabolism, the citric acid cycle, and the urea cycle. The results of this study validate and complement the current literature and are consistent with the understood pathobiology of PKD.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Rim/metabolismo , Fígado/metabolismo , Metabolômica/métodos , Doenças Renais Policísticas/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Feminino , Masculino , Metaboloma/fisiologia , Ratos , Reprodutibilidade dos Testes
17.
Metabolomics ; 15(2): 17, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30830424

RESUMO

INTRODUCTION: As large scale metabolic phenotyping is increasingly employed in preclinical studies and in the investigation of human health and disease the current LC-MS/MS profiling methodologies adopted for large sample sets can result in lengthy analysis times, putting strain on available resources. As a result of these pressures rapid methods of untargeted analysis may have value where large numbers of samples require screening. OBJECTIVES: To develop, characterise and evaluate a rapid UHP-HILIC-MS-based method for the analysis of polar metabolites in rat urine and then extend the capabilities of this approach by the addition of IMS to the system. METHODS: A rapid untargeted HILIC LC-MS/MS profiling method for the analysis of small polar molecules has been developed. The 3.3 min separation used a Waters BEH amide (1 mm ID) analytical column on a Waters Synapt G2-Si Q-Tof enabled with ion mobility spectrometry (IMS). The methodology, was applied to the metabolic profiling of a series of rodent urine samples from vehicle-treated control rats and animals administered tienilic acid. The same separation was subsequently linked to IMS and MS to evaluate the benefits that IMS might provide for metabolome characterisation. RESULTS: The rapid HILIC-MS method was successfully applied to rapid analysis of rat urine and found, based on the data generated from the data acquired for the pooled quality control samples analysed at regular intervals throughout the analysis, to be robust. Peak area and retention times for the compounds detected in these samples showed good reproducibility across the batch. When used to profile the urine samples obtained from vehicle-dosed control and those administered tienilic acid the HILIC-MS method detected 3007 mass/retention time features. Analysis of the same samples using HILIC-IMS-MS enabled the detection of 6711 features. Provisional metabolite identification for a number of compounds was performed using the high collision energy MS/MS information compared against the Metlin MS/MS database and, in addition, both calculated and measured CCS values from an experimentally derived CCS database. CONCLUSION: A rapid metabolic profiling method for the analysis of polar metabolites has been developed. The method has the advantages of speed and both reducing sample and solvent consumption compared to conventional profiling methods. The addition of IMS added an additional dimension for feature detection and the identification of metabolites.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metabolômica/métodos , Urina/química , Animais , Líquidos Corporais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Masculino , Metaboloma , Controle de Qualidade , Ratos/urina , Ratos Sprague-Dawley/urina , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
18.
Metabolites ; 9(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769897

RESUMO

Diseases of the kidney are difficult to diagnose and treat. This review summarises the definition, cause, epidemiology and treatment of some of these diseases including chronic kidney disease, diabetic nephropathy, acute kidney injury, kidney cancer, kidney transplantation and polycystic kidney diseases. Numerous studies have adopted a metabolomics approach to uncover new small molecule biomarkers of kidney diseases to improve specificity and sensitivity of diagnosis and to uncover biochemical mechanisms that may elucidate the cause and progression of these diseases. This work includes a description of mass spectrometry-based metabolomics approaches, including some of the currently available tools, and emphasises findings from metabolomics studies of kidney diseases. We have included a varied selection of studies (disease, model, sample number, analytical platform) and focused on metabolites which were commonly reported as discriminating features between kidney disease and a control. These metabolites are likely to be robust indicators of kidney disease processes, and therefore potential biomarkers, warranting further investigation.

19.
Exp Physiol ; 104(1): 81-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30311980

RESUMO

NEW FINDINGS: What is the central question of this study? Does 14 days of live-high, train-low simulated altitude alter an individual's metabolomic/metabolic profile? What is the main finding and its importance? This study demonstrated that ∼200 h of moderate simulated altitude exposure resulted in greater variance in measured metabolites between subject than within subject, which indicates individual variability during the adaptive phase to altitude exposure. In addition, metabolomics results indicate that altitude alters multiple metabolic pathways, and the time course of these pathways is different over 14 days of altitude exposure. These findings support previous literature and provide new information on the acute adaptation response to altitude. ABSTRACT: The purpose of this study was to determine the influence of 14 days of normobaric hypoxic simulated altitude exposure at 3000 m on the human plasma metabolomic profile. For 14 days, 10 well-trained endurance runners (six men and four women; 29 ± 7 years of age) lived at 3000 m simulated altitude, accumulating 196.4 ± 25.6 h of hypoxic exposure, and trained at ∼600 m. Resting plasma samples were collected at baseline and on days 3 and 14 of altitude exposure and stored at -80°C. Plasma samples were analysed using liquid chromatography-high-resolution mass spectrometry to construct a metabolite profile of altitude exposure. Mass spectrometry of plasma identified 36 metabolites, of which eight were statistically significant (false discovery rate probability 0.1) from baseline to either day 3 or day 14. Specifically, changes in plasma metabolites relating to amino acid metabolism (tyrosine and proline), glycolysis (adenosine) and purine metabolism (adenosine) were observed during altitude exposure. Principal component canonical variate analysis showed significant discrimination between group means (P < 0.05), with canonical variate 1 describing a non-linear recovery trajectory from baseline to day 3 and then back to baseline by day 14. Conversely, canonical variate 2 described a weaker non-recovery trajectory and increase from baseline to day 3, with a further increase from day 3 to 14. The present study demonstrates that metabolomics can be a useful tool to monitor metabolic changes associated with altitude exposure. Furthermore, it is apparent that altitude exposure alters multiple metabolic pathways, and the time course of these changes is different over 14 days of altitude exposure.


Assuntos
Altitude , Hipóxia/metabolismo , Metaboloma/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Feminino , Humanos , Masculino , Metabolômica/métodos , Descanso/fisiologia , Corrida/fisiologia , Adulto Jovem
20.
J Intensive Care ; 6: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214812

RESUMO

BACKGROUND: Both anaemia and red blood cell (RBC) transfusion are common and associated with adverse outcomes in patients admitted to the intensive care unit (ICU). The aim of this study was to determine whether serum hepcidin concentration, measured early after ICU admission in patients with anaemia, could identify a group in whom intravenous (IV) iron therapy decreased the subsequent RBC transfusion requirement. METHODS: We conducted a prospective observational study nested within a multicenter randomized controlled trial (RCT) of IV iron versus placebo. The study was conducted in the ICUs of four tertiary hospitals in Perth, Western Australia. Critically ill patients with haemoglobin (Hb) of < 100 g/L and within 48 h of admission to the ICU were eligible for participation after enrolment in the IRONMAN RCT. The response to IV iron therapy compared with placebo was assessed according to tertile of hepcidin concentration. RESULTS: Hepcidin concentration was measured within 48 h of ICU admission in 133 patients. For patients in the lower two tertiles of hepcidin concentration (< 53.0 µg), IV iron therapy compared with placebo was associated with a significant decrease in RBC transfusion requirement [risk ratio 0.48 (95% CI 0.26-0.85), p = 0.013]. CONCLUSIONS: In critically ill patients with anaemia admitted to an ICU, baseline hepcidin concentration predicts RBC transfusion requirement and is able to identify a group of patients in whom IV iron compared with placebo is associated with a significant decrease in RBC transfusion requirement. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ANZCTRN12612001249 Registered 26/11/2012.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...