Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498590

RESUMO

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here, we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.


Assuntos
Receptor ErbB-2 , Transdução de Sinais , Humanos , Receptor ErbB-2/metabolismo , Glicosilação , Ligantes , Receptor ErbB-4/metabolismo , Proteínas de Transporte/metabolismo
2.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260342

RESUMO

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.

3.
Methods Enzymol ; 667: 611-632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525556

RESUMO

Biochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture. The reconstructions reveal previously unappreciated extracellular domain dynamics and glycosylation sites.


Assuntos
Detergentes , Micelas , Animais , Microscopia Crioeletrônica/métodos , Humanos , Mamíferos
4.
Methods Enzymol ; 667: 633-662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525557

RESUMO

Obtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1ß (NRG1ß) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1ß complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies. After overcoming significant hurdles in isolating sufficient amounts of the HER2/HER3/NRG1ß complex for structural studies by cryo-electron microscopy (cryo-EM), we recently obtained the first high-resolution structures of the extracellular portion of this complex. Here we describe a step-by-step protocol for obtaining a stable and homogenous HER2/HER3/NRG1ß complex for structural studies and our recommendation for collecting and processing cryo-EM data for this sample. We also show improved EM density for the transmembrane and kinase domains of the receptors, which continue to evade structural determination at high resolution. The discussed strategies are tunable and applicable to other membrane receptor complexes.


Assuntos
Neoplasias da Mama , Receptor ErbB-3 , Neoplasias da Mama/metabolismo , Microscopia Crioeletrônica , Feminino , Humanos , Ligantes , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo
5.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35506657

RESUMO

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers. All programmed CARs stimulated substantially lower T cell cytokine release relative to the commonly used CD28 TMD, which we show elevated cytokine release through lateral recruitment of the endogenous T cell costimulatory receptor CD28. Precise design using orthogonal and modular TMDs thus provides a new way to program receptor structure and predictably tune activity for basic or applied synthetic biology.


Assuntos
Antígenos CD28 , Receptores de Antígenos Quiméricos , Animais , Antígenos CD28/metabolismo , Citocinas/metabolismo , Camundongos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nature ; 600(7888): 339-343, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759323

RESUMO

Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1ß (NRG1ß). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1ß-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1ß-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1ß-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.


Assuntos
Microscopia Crioeletrônica , Neuregulina-1/química , Multimerização Proteica , Receptor ErbB-2/química , Receptor ErbB-3/química , Regulação Alostérica , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/ultraestrutura , Sítios de Ligação , Humanos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Mutação , Neuregulina-1/ultraestrutura , Oncogenes/genética , Estabilidade Proteica , Receptor ErbB-2/ultraestrutura , Receptor ErbB-3/ultraestrutura , Trastuzumab/química , Trastuzumab/ultraestrutura
8.
Cell Rep Med ; 2(8): 100361, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467245

RESUMO

Hanker et al. reveal that co-occurring missense mutations in the human epidermal growth factor receptor 2 (HER2) and its catalytically inactive homolog HER3 synergize to promote oncogenic signaling by the HER2/HER3 complex.


Assuntos
Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Oncogenes/genética , Fosforilação , Receptor ErbB-2/genética , Receptor ErbB-3/genética
9.
J Biol Chem ; 297(1): 100900, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157285

RESUMO

Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi's sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.


Assuntos
Antígeno B7-2/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo , Células HEK293 , Células HeLa , Humanos , Mutação , Domínios Proteicos , Transporte Proteico
10.
Science ; 370(6523): 1473-1479, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33154106

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Testes de Neutralização , Ligação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/química , Glicoproteína da Espícula de Coronavírus/química , Células Vero
11.
bioRxiv ; 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32817938

RESUMO

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.

12.
Curr Opin Cell Biol ; 63: 174-185, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32114309

RESUMO

Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor-ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.


Assuntos
Ligantes , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Fosforilação , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
13.
Langmuir ; 35(25): 8344-8356, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31122018

RESUMO

For evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L? phase conduit. However, studies to date have, by necessity, focused on structural transitions occurring in the lipid mesophase. Here, we demonstrate using small-angle neutron scattering that the lipid bilayer of monoolein (the most commonly used lipid for in meso crystallization) can be contrast-matched using deuteration, allowing us to isolate scattering from encapsulated peptides during the crystal growth process for the first time. During in meso crystallization, a clear decrease in form factor scattering intensity of the peptides was observed and directly correlated with crystal growth. A transient fluid lamellar L? phase was observed, providing direct evidence for the proposed mechanism for this technique. This suggests that the peptide passes through a transition from the cubic QII phase, via an L? phase to the lamellar crystalline Lc phase with similar layered spacing. When high protein loading was possible, the lamellar crystalline Lc phase of the peptide in the single crystals was observed. These findings show the mechanism of in meso crystallization for the first time from the perspective of integral membrane proteins.


Assuntos
Cristalização/métodos , Bicamadas Lipídicas/química , Glicerídeos/química , Difração de Raios X
14.
Nat Commun ; 10(1): 531, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705304

RESUMO

PGAM5 is a mitochondrial protein phosphatase whose genetic ablation in mice results in mitochondria-related disorders, including neurodegeneration. Functions of PGAM5 include regulation of mitophagy, cell death, metabolism and aging. However, mechanisms regulating PGAM5 activation and signaling are poorly understood. Using electron cryo-microscopy, we show that PGAM5 forms dodecamers in solution. We also present a crystal structure of PGAM5 that reveals the determinants of dodecamer formation. Furthermore, we observe PGAM5 dodecamer assembly into filaments both in vitro and in cells. We find that PGAM5 oligomerization into a dodecamer is not only essential for catalytic activation, but this form also plays a structural role on mitochondrial membranes, which is independent of phosphatase activity. Together, these findings suggest that modulation of the oligomerization of PGAM5 may be a regulatory switch of potential therapeutic interest.


Assuntos
Microscopia Crioeletrônica/métodos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/ultraestrutura , Animais , Morte Celular/genética , Morte Celular/fisiologia , Camundongos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Mitofagia/genética , Mitofagia/fisiologia , Polimerização
15.
PLoS Pathog ; 13(8): e1006552, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806784

RESUMO

Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10-14 of ß spectrin, proximal to the spectrin-ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/metabolismo , Peptídeos/metabolismo , Proteínas de Protozoários/metabolismo , Espectrina/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Plasmodium falciparum , Proteínas de Protozoários/química , Espectrina/química
16.
Curr Opin Struct Biol ; 39: 115-123, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27423296

RESUMO

Single-spanning receptors are typically active in dimeric or oligomeric forms in which ligand-induced complex formation and/or conformational changes are the key events that transmit information across the cell membrane. This process is often depicted exclusively in terms of extracellular receptor-ligand interactions and their intracellular consequences, but the lipid-embedded α-helical transmembrane domains can also engage in specific intermolecular interactions that play important roles in establishing receptor complex structure and regulating signal propagation through the lipid bilayer. Obtaining high-resolution structural information on these interactions is extremely challenging, and the small number of structures currently available in the protein data bank represents only about a dozen unique receptors. In this review, we highlight new structures that provide novel insights into receptor tyrosine kinase and death receptor function and discuss the implications of recent successes in the application of X-ray crystallographic techniques to determine the structures of receptor transmembrane complexes in lipid bilayers.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Ligação Proteica , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo
17.
FEBS Open Bio ; 6(1): 90-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27047736

RESUMO

Cell-free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell-free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non-natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein-protein interactions and for studying binding kinetics. In this study we evaluated cell-free protein production for the generation of radiolabelled ligands for G protein-coupled receptors (GPCRs). These receptors are seven-transmembrane-domain receptors activated by a plethora of extracellular stimuli including peptide ligands. Many GPCR peptide ligands contain disulphide bonds and are thus inherently difficult to produce in bacterial expression hosts or in Escherichia coli-based cell-free systems. Here, we established an adapted E. coli-based cell-free translation system for the production of disulphide bond-containing GPCR peptide ligands and specifically introduce tritium labels for detection. The bacterial oxidoreductase DsbA is used as a chaperone to favour the formation of disulphide bonds and to enhance the yield of correctly folded proteins and peptides. We demonstrate the correct folding and formation of disulphide bonds and show high-affinity ligand binding of the produced radio peptide ligands to the respective receptors. Thus, our system allows the fast, cost-effective and reliable synthesis of custom GPCR peptide ligands for functional and structural studies.

18.
J Am Chem Soc ; 137(50): 15676-9, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26642914

RESUMO

The mechanisms of assembly and function for many important type I/II (single-pass) transmembrane (TM) receptors are proposed to involve the formation and/or alteration of specific interfaces among their membrane-embedded α-helical TM domains. The application of lipidic cubic phase (LCP) bilayer media for crystallization of single-α-helical TM complexes has the potential to provide valuable structural and mechanistic insights into many such systems. However, the fidelity of the interfaces observed in crowded crystalline arrays has been difficult to establish from the very limited number of such structures determined using X-ray diffraction data. Here we examine this issue using the glycophorin A (GpA) model system, whose homodimeric TM helix interface has been characterized by solution and solid-state NMR and biochemical techniques but never crystallographically. We report that a GpA-TM peptide readily crystallized in a monoolein cubic phase bilayer, yielding a dimeric α-helical structure that is in excellent agreement with previously reported NMR measurements made in several different types of host media. These results provide compelling support for the wider application of LCP techniques to enable X-ray crystallographic analysis of single-pass TM interactions.


Assuntos
Glicoforinas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Bicamadas Lipídicas , Dados de Sequência Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...