Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 188: 116407, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065415

RESUMO

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts. We analyzed historical data from nutrient bioassay experiments (1992-2002) and data from long-term, fixed-site water-quality monitoring program (1990-2017) to develop empirical approaches for predicting nutrient limitation in the surface waters of the mainstem Bay. Results from classification and regression trees (CART) matched the seasonal and spatial patterns of bioassay-based nutrient limitation in the 1992-2002 period much better than two simpler, non-statistical approaches. An ensemble approach of three selected CART models satisfactorily reproduced the bioassay-based results (classification rate = 99%). This empirical approach can be used to characterize nutrient limitation from long-term water-quality monitoring data on much broader geographic and temporal scales than would be feasible using bioassays, providing a new tool for informing water-quality management. Results from our application of the approach to 21 tidal monitoring stations for the period of 2007-2017 showed modest changes in nutrient limitation patterns, with expanded areas of nitrogen-limitation and contracted areas of nutrient saturation (i.e., not limited by nitrogen or phosphorus). These changes imply that long-term reductions in nitrogen load have led to expanded areas with nutrient-limited phytoplankton growth in the Bay, reflecting long-term water-quality improvements in the context of nutrient enrichment. However, nutrient limitation patterns remain unchanged in the majority of the mainstem, suggesting that nutrient loads should be further reduced to achieve a less nutrient-saturated ecosystem.


Assuntos
Baías , Fitoplâncton , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Nutrientes , Fósforo/análise , Água
2.
Sci Total Environ ; 637-638: 1617-1625, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925196

RESUMO

To protect the aquatic living resources of Chesapeake Bay, the Chesapeake Bay Program partnership has developed guidance for state water quality standards, which include ambient water quality criteria to protect designated uses (DUs), and associated assessment procedures for dissolved oxygen (DO), water clarity/underwater bay grasses, and chlorophyll-a. For measuring progress toward meeting the respective states' water quality standards, a multimetric attainment indicator approach was developed to estimate combined standards attainment. We applied this approach to three decades of monitoring data of DO, water clarity/underwater bay grasses, and chlorophyll-a data on annually updated moving 3-year periods to track the progress in all 92 management segments of tidal waters in Chesapeake Bay. In 2014-2016, 40% of tidal water segment-DU-criterion combinations in the Bay (n = 291) are estimated to meet thresholds for attainment of their water quality criteria. This index score marks the best 3-year status in the entire record. Since 1985-1987, the indicator has followed a nonlinear trajectory, consistent with impacts from extreme weather events and subsequent recoveries. Over the period of record (1985-2016), the indicator exhibited a positive and statistically significant trend (p < 0.05), indicating that the Bay has been recovering since 1985. Patterns of attainment of individual DUs are variable, but improvements in open water DO, deep channel DO, and water clarity/submerged aquatic vegetation have combined to drive the improvement in the Baywide indicator in 2014-2016 relative to its long-term median. Finally, the improvement in estimated Baywide attainment was statistically linked to the decline of total nitrogen, indicating responsiveness of attainment status to the reduction of nutrient load through various management actions since at least the 1980s.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31534947

RESUMO

Low dissolved oxygen (DO) conditions are a recurring issue in waters of Chesapeake Bay, with detrimental effects on aquatic living resources. The Chesapeake Bay Program partnership has developed criteria guidance supporting the definition of state water quality standards and associated assessment procedures for DO and other parameters, which provides a binary classification of attainment or impairment. Evaluating time series of these two outcomes alone, however, provides limited information on water quality change over time or space. Here we introduce an extension of the existing Chesapeake Bay water quality criterion assessment framework to quantify the amount of impairment shown by space-time exceedance of DO criterion ("attainment deficit") for a specific tidal management unit (i.e., segment). We demonstrate the usefulness of this extended framework by applying it to Bay segments for each 3-year assessment period between 1985 and 2016. In general, the attainment deficit for the most recent period assessed (i.e., 2014-2016) is considerably worse for deep channel (DC; n = 10) segments than open water (OW; n = 92) and deep water (DW; n = 18) segments. Most subgroups - classified by designated uses, salinity zones, or tidal systems - show better (or similar) attainment status in 2014-2016 than their initial status (1985-1987). Some significant temporal trends (p < 0.1) were detected, presenting evidence on the recovery for portions of Chesapeake Bay with respect to DO criterion attainment. Significant, improving trends were observed in seven OW segments, four DW segments, and one DC segment over the 30 3-year assessment periods (1985-2016). Likewise, significant, improving trends were observed in 15 OW, five DW, and four DC segments over the recent 15 assessment periods (2000-2016). Subgroups showed mixed trends, with the Patuxent, Nanticoke, and Choptank Rivers experiencing significant, improving short-term (2000-2016) trends while Elizabeth experiencing a significant, degrading short-term trend. The general lack of significantly improving trends across the Bay suggests that further actions will be necessary to achieve full attainment of DO criterion. Insights revealed in this work are critical for understanding the dynamics of the Bay ecosystem and for further assessing the effectiveness of management initiatives aimed toward Bay restoration.

4.
Photosynth Res ; 123(3): 305-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24599393

RESUMO

Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.


Assuntos
Agricultura/legislação & jurisprudência , Biocombustíveis , Clorófitas , Produtos Agrícolas , Cianobactérias , Microalgas , Política Pública , Agricultura/métodos , Biomassa , Biotecnologia , Programas Governamentais , Estados Unidos , United States Department of Agriculture/legislação & jurisprudência
5.
Proc Natl Acad Sci U S A ; 110(49): 19748-53, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248374

RESUMO

Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type-like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth.


Assuntos
Biocombustíveis , Diatomáceas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Engenharia Metabólica/métodos , Microalgas/metabolismo , Organismos Geneticamente Modificados/metabolismo , Biomassa , Western Blotting , Cromatografia em Camada Fina , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Interferência de RNA
6.
Curr Opin Chem Biol ; 17(3): 506-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23538202

RESUMO

Microalgae are among the most diverse organisms on the planet, and as a result of symbioses and evolutionary selection, the configuration of core metabolic networks is highly varied across distinct algal classes. The differences in photosynthesis, carbon fixation and processing, carbon storage, and the compartmentation of cellular and metabolic processes are substantial and likely to transcend into the efficiency of various steps involved in biofuel molecule production. By highlighting these differences, we hope to provide a framework for comparative analyses to determine the efficiency of the different arrangements or processes. This sets the stage for optimization on the based on information derived from evolutionary selection to diverse algal classes and to synthetic systems.


Assuntos
Biocombustíveis/microbiologia , Evolução Molecular , Microalgas/citologia , Microalgas/metabolismo , Ciclo do Carbono/efeitos da radiação , Redes e Vias Metabólicas/efeitos da radiação , Microalgas/efeitos da radiação , Fotossíntese/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...