Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 105: 110035, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546369

RESUMO

Aiming to perfuse porous tubular scaffolds for vascular tissue engineering (VTE) with controlled flow rate, prevention of leakage through the scaffold lumen is required. A gel coating made of 8% w/v alginate and 6% w/v gelatin functionalized with fibronectin was produced using a custom-made bioreactor-based method. Different volumetric proportions of alginate and gelatin were tested (50/50, 70/30, and 90/10). Gel swelling and stability, and rheological, and uniaxial tensile tests reveal superior resistance to the aggressive biochemical microenvironment, and their ability to withstand physiological deformations (~10%) and wall shear stresses (5-20 dyne/cm2). These are prerequisites to maintain the physiologic phenotypes of vascular smooth muscle cells and endothelial cells (ECs), mimicking blood vessels microenvironment. Gels can induce ECs proliferation and colonization, especially in the presence of fibronectin and higher percentages of gelatin. The custom-designed bioreactor enables the development of reproducible and homogeneous tubular gel coating. The permeability tests show the effectiveness of tubular scaffolds coated with 70/30 alginate/gelatin gel to occlude wadding pores, and therefore prevent leakages. The synthesized double-layered tubular scaffolds coated with alginate/gelatin gel and fibronectin represent both promising substrate for ECs and effective leakproof scaffolds, when subjected to pulsatile perfusion, for VTE applications.


Assuntos
Vasos Sanguíneos/fisiologia , Hidrogéis/farmacologia , Resistência ao Cisalhamento , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Reatores Biológicos , Vasos Sanguíneos/efeitos dos fármacos , Linhagem Celular , Humanos , Permeabilidade , Porosidade , Resistência à Tração
2.
Comput Methods Biomech Biomed Engin ; 20(10): 1077-1088, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28569086

RESUMO

The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.


Assuntos
Vasos Sanguíneos/fisiologia , Reologia , Engenharia Tecidual/métodos , Animais , Artérias/fisiologia , Fenômenos Biomecânicos , Reatores Biológicos , Modelos Teóricos , Pressão , Estresse Mecânico , Suínos , Alicerces Teciduais/química
3.
J Appl Biomater Funct Mater ; 15(2): e122-e132, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28362040

RESUMO

BACKGROUND: In vitro dynamic culture conditions play a pivotal role in developing engineered tissue grafts, where the supply of oxygen and nutrients, and waste removal must be permitted within construct thickness. For tubular scaffolds, mass transfer is enhanced by introducing a convective flow through rotating bioreactors with positive effects on cell proliferation, scaffold colonization and extracellular matrix deposition. We characterized a novel polyurethane-based tubular scaffold and investigated the impact of 3 different culture configurations over cell behavior: dynamic (i) single-phase (medium) rotation and (ii) double-phase exposure (medium-air) rotation; static (iii) single-phase static culture as control. METHODS: A new mixture of polyol was tested to create polyurethane foams (PUFs) as 3D scaffold for tissue engineering. The structure obtained was morphologically and mechanically analyzed tested. Murine fibroblasts were externally seeded on the novel porous PUF scaffold, and cultured under different dynamic conditions. Viability assay, DNA quantification, SEM and histological analyses were performed at different time points. RESULTS: The PUF scaffold presented interesting mechanical properties and morphology adequate to promote cell adhesion, highlighting its potential for tissue engineering purposes. Results showed that constructs under dynamic conditions contain enhanced viability and cell number, exponentially increased for double-phase rotation; under this last configuration, cells uniformly covered both the external surface and the lumen. CONCLUSIONS: The developed 3D structure combined with the alternated exposure to air and medium provided the optimal in vitro biochemical conditioning with adequate nutrient supply for cells. The results highlight a valuable combination of material and dynamic culture for tissue engineering applications.


Assuntos
Reatores Biológicos , Poliuretanos , Engenharia Tecidual , Alicerces Teciduais , Animais , Células Cultivadas , Fibroblastos/citologia , Camundongos
4.
Regen Med ; 10(4): 505-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26022767

RESUMO

The absence of successful solutions in treatments of small-caliber vessel diseases led to the Vascular Tissue Engineering approach to develop functional nonimmunogenic tissue engineered blood vessels. In this context, the choice of cells to be seeded and the microenvironment conditioning are pivotal. Biochemical and biomechanical stimuli seem to activate physiological regulatory pathways that induce the production of molecules and proteins stimulating stem cell differentiation toward vascular lineage and reproducing natural cross-talks among vascular cells to improve the maturation of tissue engineered blood vessels. Thus, this review focuses on (1) available cell sources, and (2) biochemical and biomechanical stimuli, with the final aim to obtain the long-term stability of the endothelium and mechanical properties suitable for withstanding physiological load.


Assuntos
Prótese Vascular , Vasos Sanguíneos/fisiologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Diferenciação Celular , Humanos
5.
Genome Biol ; 15(10): 499, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358694

RESUMO

BACKGROUND: The temporal coordination of biological processes into daily cycles is a common feature of most living organisms. In humans, disruption of circadian rhythms is commonly observed in psychiatric diseases,including schizophrenia, bipolar disorder, depression and autism. Light therapy is the most effective treatment for seasonal affective disorder and circadian-related treatments sustain antidepressant response in bipolar disorder patients. Day/night cycles represent a major circadian synchronizing signal and vary widely with latitude. RESULTS: We apply a geographically explicit model to show that out-of-Africa migration, which led humans to occupy a wide latitudinal area, affected the evolutionary history of circadian regulatory genes. The SNPs we identify using this model display consistent signals of natural selection using tests based on population genetic differentiation and haplotype homozygosity. Signals of natural selection driven by annual photoperiod variation are detected for schizophrenia, bipolar disorder, and restless leg syndrome risk variants, in line with the circadian component of these conditions. CONCLUSIONS: Our results suggest that human populations adapted to life at different latitudes by tuning their circadian clock systems. This process also involves risk variants for neuropsychiatric conditions, suggesting possible genetic modulators for chronotherapies and candidates for interaction analysis with photoperiod-related environmental variables, such as season of birth, country of residence, shift-work or lifestyle habits.


Assuntos
Adaptação Biológica , Relógios Circadianos/genética , Transtornos do Humor/genética , Fotoperíodo , Evolução Molecular , Redes Reguladoras de Genes , Predisposição Genética para Doença , Geografia , Haplótipos , Migração Humana , Humanos , Fototerapia , Polimorfismo de Nucleotídeo Único
6.
Mol Biol Evol ; 31(9): 2402-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24930137

RESUMO

The protein product of the myxovirus resistance 2 (MX2) gene restricts HIV-1 and simian retroviruses. We demonstrate that MX2 evolved adaptively in mammals with distinct sites representing selection targets in distinct branches; selection mainly involved residues in loop 4, previously shown to carry antiviral determinants. Modeling data indicated that positively selected sites form a continuous surface on loop 4, which folds into two antiparallel α-helices protruding from the stalk domain. A population genetics-phylogenetics approach indicated that the coding region of MX2 mainly evolved under negative selection in the human lineage. Nonetheless, population genetic analyses demonstrated that natural selection operated on MX2 during the recent history of human populations: distinct selective events drove the frequency increase of two haplotypes in the populations of Asian and European ancestry. The Asian haplotype carries a susceptibility allele for melanoma; the European haplotype is tagged by rs2074560, an intronic variant. Analyses performed on three independent European cohorts of HIV-1-exposed seronegative individuals with different geographic origin and distinct exposure route showed that the ancestral (G) allele of rs2074560 protects from HIV-1 infection with a recessive effect (combined P = 1.55 × 10(-4)). The same allele is associated with lower in vitro HIV-1 replication and increases MX2 expression levels in response to IFN-α. Data herein exploit evolutionary information to identify a novel host determinant of HIV-1 infection susceptibility.


Assuntos
Povo Asiático/genética , Resistência à Doença , Infecções por HIV/genética , Infecções por HIV/imunologia , Proteínas de Resistência a Myxovirus/genética , População Branca/genética , Biologia Computacional/métodos , Evolução Molecular , Variação Genética , HIV-1/patogenicidade , Haplótipos , Humanos , Modelos Genéticos , Proteínas de Resistência a Myxovirus/química , Filogenia , Seleção Genética
7.
PLoS Genet ; 10(3): e1004189, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675550

RESUMO

The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-up analyses.


Assuntos
Apresentação de Antígeno/genética , Seleção Genética , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Alelos , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Evolução Molecular , Genética Populacional , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Mamíferos , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Filogenia
8.
J Mol Biol ; 426(6): 1351-65, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24211720

RESUMO

RIG-I-like receptors (RLRs) are nucleic acid sensors that activate antiviral innate immune response. These molecules recognize diverse non-self RNA substrates and are antagonized by several viral inhibitors. We performed an evolutionary analysis of RLR genes (RIG-I, MDA5, and LGP2) in mammals. Results indicated that purifying selection had a dominant role in driving the evolution of RLRs. However, application of maximum-likelihood analyses identified several positions that evolved adaptively. Positively selected sites are located in all domains of MDA5 and RIG-I, whereas in LGP2 they are confined to the helicase domain. In both MDA5 and RIG-I, the linkers separating the caspase activation and recruitment domain and the helicase domain represented preferential targets of positive selection. Independent selective events in RIG-I and LGP2 targeted the corresponding site (Asp421 and Asp179, respectively) within a protruding α-helix that grips the V-shaped structure formed by the pincer. Most of the positively selected sites in MDA5 are in regions unique to this RLR, including a characteristic insertion within the helicase domain. Additional selected sites are located at the contact interface between MDA5 monomers, in spatial proximity to a positively selected human polymorphism (Arg843His) and immediately external to the parainfluenza virus 5 V protein binding region. Structural analyses suggested that the positively selected His834 residue is involved in parainfluenza virus 5 V protein binding. Data herein suggest that RLRs have been engaged in host-virus genetic conflict leading to diversifying selection and indicate parallel evolution at the same site in RIG-I and LGP2, a position likely to be of central importance in antiviral responses.


Assuntos
Imunidade Adaptativa/imunologia , RNA Helicases DEAD-box/imunologia , Evolução Molecular , Receptores de Reconhecimento de Padrão/imunologia , Imunidade Adaptativa/genética , Sequência de Aminoácidos , Animais , RNA Helicases DEAD-box/genética , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon , Mamíferos , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/imunologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...