Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 606: 10-16, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35338853

RESUMO

BACKGROUND: There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES: We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS: We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS: FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS: Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.


Assuntos
Infarto do Miocárdio , Fator 2 Relacionado a NF-E2/metabolismo , Remodelação Ventricular , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Remodelação Ventricular/fisiologia
2.
Front Immunol ; 13: 838328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251032

RESUMO

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Assuntos
Atrofia/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Linfócitos B/imunologia , Humanos , Tecido Linfoide/imunologia , Macrófagos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia
3.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375309

RESUMO

Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodeling. As Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesized that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. We generated a potentially novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+ mice) and transplanted with hearts from CB6F1 donors. As compared with those of littermate controls, Nox2fl/flFoxP3Cre+ mice had lower plasma levels of alloantibodies and troponin-I, reduced levels of IFN-γ in heart allograft homogenates, and diminished cardiomyocyte necrosis and allograft fibrosis. Single-cell analyses of allografts revealed higher absolute numbers of Tregs and lower CD8+ T cell infiltration in Nox2-deficient recipients compared with Nox2-replete mice. Mechanistically, in addition to a greater suppression of CD8+CD25- T effector cell proliferation and IFN-γ production, Nox2-deficient Tregs expressed higher levels of CCR4 and CCR8, driving cell migration to allografts; this was associated with increased expression of miR-214-3p. These data indicate that Nox2 deletion in Tregs enhances their suppressive ability and migration to heart allografts. Therefore, Nox2 inhibition in Tregs may be a useful approach to improve their therapeutic efficacy.


Assuntos
Aloenxertos/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , NADPH Oxidase 2/genética , Linfócitos T Reguladores/imunologia , Aloenxertos/metabolismo , Aloenxertos/patologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Proliferação de Células , Feminino , Fibrose , Rejeição de Enxerto/sangue , Interferon gama/metabolismo , Isoanticorpos/sangue , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Necrose , Receptores CCR4/metabolismo , Receptores CCR8/metabolismo , Linfócitos T Reguladores/metabolismo , Transplante Homólogo , Troponina I/sangue
4.
J Infect Dis ; 221(9): 1542-1553, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31783409

RESUMO

BACKGROUND: Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-ß, the consequences of their activation, particularly during sepsis, remain unknown. METHODS: We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS: In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS: Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.


Assuntos
Receptores X do Fígado/metabolismo , Neutrófilos/patologia , Sepse/imunologia , Sepse/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adulto , Animais , Ceco/microbiologia , Ceco/cirurgia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Interleucina-8/metabolismo , Ligadura , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/microbiologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Punções , Sepse/microbiologia
5.
Front Immunol ; 10: 2795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849973

RESUMO

Cardiovascular diseases (CVD) are the leading cause of mortality worldwide. Atherosclerosis is directly associated with CVD and is characterized by slow progressing inflammation which results in the deposition and accumulation of lipids beneath the endothelial layer in conductance and resistance arteries. Both chronic inflammation and disease progression have been associated with several risk factors, including but not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and hypertension. Currently, despite increasing incidence and significant expense on the healthcare system in both western and developing countries, there is no curative therapy for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert vessel occlusion, and pharmacological management of the aforementioned risk factors. However, neither of these approaches completely resolve the underlying inflammatory environment which perpetuates the disease, nor do they result in plaque regression. As such, immunomodulation could provide a novel therapeutic option for atherosclerosis; shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells (Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have been shown to be athero-protective and could function as new targets in both CVD and atherosclerosis. This review aims to give a comprehensive overview about the roles of Tregs in CVD, focusing on atherosclerosis.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Aterosclerose/diagnóstico , Aterosclerose/terapia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Ensaios Clínicos como Assunto , Metabolismo Energético/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imunomodulação/efeitos dos fármacos , Fatores de Risco , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos
6.
Front Immunol ; 9: 962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867945

RESUMO

The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 µl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (-/-) and interferon-γ (IFN-γ)-/- mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2-/- bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.


Assuntos
Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Infecções Estafilocócicas/imunologia , Líquido Sinovial/imunologia , Animais , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite do Joelho/imunologia , Staphylococcus aureus
7.
Shock ; 47(3): 276-287, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27787406

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a deregulated host response to infection. This inappropriate response to micro-organism invasion is characterized by an overwhelmed systemic inflammatory response and cardiovascular collapse that culminate in high mortality and morbidity in critical care units. The occurrence of sepsis in diabetes mellitus (DM) patients has become more frequent, as the prevalence of DM has increased dramatically worldwide. These two important diseases represent a global public health concern and highlight the importance of increasing our knowledge of the key elements of the immune response related to both conditions. In this context, it is well established that the cells taking part in the innate and adaptive immune responses in diabetic patients have compromised function. These altered responses favor micro-organism growth, a process that contributes to sepsis progression. The present review provides an update on the characteristics of the immune system in diabetic and septic subjects. We also explore the beneficial effects of insulin on the immune response in a glycemic control-dependent and independent manner.


Assuntos
Diabetes Mellitus/microbiologia , Sepse/microbiologia , Glicemia/efeitos dos fármacos , Complicações do Diabetes , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Humanos , Insulina/uso terapêutico , Sepse/sangue , Sepse/tratamento farmacológico
8.
Intensive Care Med Exp ; 4(1): 5, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26879814

RESUMO

BACKGROUND: The nature of the inflammatory response underscoring the pathophysiology of sepsis has been extensively studied. We hypothesized that different cell functions would be differentially regulated in a patient with sepsis. We evaluated the modulation of monocyte functions during sepsis by simultaneously assessing their phagocytic activity, the generation of reactive oxygen species (ROS) and nitric oxide (NO), and the production of inflammatory cytokines (IL-6 and TNF-α). METHODS: Whole blood was obtained from patients with severe sepsis and septic shock both at admission (D0, n = 34) and after seven days of therapy (D7, n = 15); 19 healthy volunteers were included as a control group. The cells were stimulated with LPS, Pseudomonas aeruginosa, and Staphylococcus aureus. The ROS and NO levels were quantified in monocytes in whole blood by measuring the oxidation of 2,7-dichlorofluorescein diacetate and 4-amino-5-methylamino-2,7-difluorofluorescein diacetate, respectively. Intracellular IL-6 and TNF-α were detected using fluorochrome-conjugated specific antibodies. Monocyte functions were also evaluated in CD163+ and CD163- monocyte subsets. RESULTS: The monocytes from septic patients presented with preserved phagocytosis, enhanced ROS and NO generation, and decreased production of inflammatory cytokines compared with the monocytes from healthy volunteers. TNF-α and IL-6 increased and ROS generation decreased in D7 compared with D0 samples. In general, CD163+ monocytes produced higher amounts of IL-6 and TNF-α and lower amounts of ROS and NO than did CD163- monocytes. CONCLUSIONS: We demonstrated that monocytes from septic patients, which are impaired to produce inflammatory cytokines, display potent phagocytic activity and increased ROS and NO generation.

9.
Infect Immun ; 83(12): 4604-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371124

RESUMO

Leishmania infantum is a protozoan parasite that causes visceral leishmaniasis (VL). This infection triggers dendritic cell (DC) activation through the recognition of microbial products by Toll-like receptors (TLRs). Among the TLRs, TLR9 is required for DC activation by different Leishmania species. We demonstrated that TLR9 is upregulated in vitro and in vivo during infection. We show that C57BL/6 mice deficient in TLR9 expression (TLR9(-/-) mice) are more susceptible to infection and display higher parasite numbers in the spleen and liver. The increased susceptibility of TLR9(-/-) mice was due to the impaired recruitment of neutrophils to the infection foci associated with reduced levels of neutrophil chemoattractants released by DCs in the target organs. Moreover, both Th1 and Th17 cells were also committed in TLR9(-/-) mice. TLR9-dependent neutrophil recruitment is mediated via the MyD88 signaling pathway but is TIR domain-containing adapter-inducing interferon beta (TRIF) independent. Furthermore, L. infantum failed to activate both plasmacytoid and myeloid DCs from TLR9(-/-) mice, which presented reduced surface costimulatory molecule expression and chemokine release. Interestingly, neutrophil chemotaxis was affected both in vitro and in vivo when DCs were derived from TLR9(-/-) mice. Our results suggest that TLR9 plays a critical role in neutrophil recruitment during the protective response against L. infantum infection that could be associated with DC activation.


Assuntos
Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Receptor Toll-Like 9/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Feminino , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Leishmania infantum/patogenicidade , Leishmaniose Visceral/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/patologia , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Neutrófilos/parasitologia , Neutrófilos/patologia , Transdução de Sinais , Baço/imunologia , Baço/parasitologia , Baço/patologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/parasitologia , Células Th17/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética
10.
J Neuroinflammation ; 11: 36, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571599

RESUMO

BACKGROUND: Sepsis- associated encephalopathy (SAE) is an early and common feature of severe infections. Oxidative stress is one of the mechanisms associated with the pathophysiology of SAE. The goal of this study was to investigate the involvement of NADPH oxidase in neuroinflammation and in the long-term cognitive impairment of sepsis survivors. METHODS: Sepsis was induced in WT and gp91(phox) knockout mice (gp91(phox-/-)) by cecal ligation and puncture (CLP) to induce fecal peritonitis. We measured oxidative stress, Nox2 and Nox4 gene expression and neuroinflammation in the hippocampus at six hours, twenty-four hours and five days post-sepsis. Mice were also treated with apocynin, a NADPH oxidase inhibitor. Behavioral outcomes were evaluated 15 days after sepsis with the inhibitory avoidance test and the Morris water maze in control and apocynin-treated WT mice. RESULTS: Acute oxidative damage to the hippocampus was identified by increased 4-HNE expression in parallel with an increase in Nox2 gene expression after sepsis. Pharmacological inhibition of Nox2 with apocynin completely inhibited hippocampal oxidative stress in septic animals. Pharmacologic inhibition or the absence of Nox2 in gp91(phox-/-) mice prevented glial cell activation, one of the central mechanisms associated with SAE. Finally, treatment with apocynin and inhibition of hippocampal oxidative stress in the acute phase of sepsis prevented the development of long-term cognitive impairment. CONCLUSIONS: Our results demonstrate that Nox2 is the main source of reactive oxygen species (ROS) involved in the oxidative damage to the hippocampus in SAE and that Nox2-derived ROS are determining factors for cognitive impairments after sepsis. These findings highlight the importance of Nox2-derived ROS as a central mechanism in the development of neuroinflammation associated with SAE.


Assuntos
Proteínas de Bactérias/metabolismo , Transtornos Cognitivos/etiologia , NADH NADPH Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Acetofenonas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Aprendizagem da Esquiva/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Receptores Imunológicos/deficiência , Sepse/tratamento farmacológico , Sepse/patologia , Tiflite/complicações , Tiflite/etiologia
11.
J Immunol ; 191(3): 1373-82, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23817413

RESUMO

Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.


Assuntos
Diabetes Mellitus Experimental/mortalidade , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Mastócitos/imunologia , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Aloxano , Animais , Bacteriemia/tratamento farmacológico , Movimento Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/microbiologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Histamina/metabolismo , Antagonistas dos Receptores H2 da Histamina , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Receptores Histamínicos H2/metabolismo , Sepse/complicações , Sepse/microbiologia , Sepse/mortalidade , Regulação para Cima/efeitos dos fármacos , p-Metoxi-N-metilfenetilamina/farmacologia
12.
Crit Care Med ; 40(9): 2631-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22732279

RESUMO

OBJECTIVES: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. DESIGN: Prospective experimental study. SETTING: University research laboratory. INTERVENTIONS: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. MEASUREMENTS AND MAIN RESULTS: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9 deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9--deficient mice with cecal ligation and puncture-induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. CONCLUSIONS: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival.


Assuntos
Quimiotaxia/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Infiltração de Neutrófilos/fisiologia , Sepse/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Sensibilidade e Especificidade , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...