Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988091

RESUMO

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Assuntos
Biodiversidade , Aves , Animais , Filogenia , Ilhas , Ecossistema
2.
Biodivers Data J ; 10: e87720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761518

RESUMO

Background: Kea is the westernmost island of the Cyclades and is located between Syros and Attica, in central Greece. In this work, we have resampled the island after 43 years - i.e. when the island was first fully sampled - and we present its complete land snail fauna. New information: We report 42 land snail species with 10 species being new records for the island. Based on our results we draw attention to the fact that sampling for land snails should be done during the wet period in order to survey the complete malacofauna in an island or a region. For such a complete survey, collection and inspection of soil and litter are also necessary. Finally, increased sampling effort through regular resurveys is a necessary prerequisite in order to effectively assess the temporal dynamics of biodiversity patterns.

3.
Nature ; 579(7797): 36-37, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123360

Assuntos
Biodiversidade , Aves , Animais , Ilhas
4.
Proc Natl Acad Sci U S A ; 116(25): 12337-12342, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31147465

RESUMO

The increase in species richness with island area (ISAR) is a well-established global pattern, commonly described by the power model, the parameters of which are hypothesized to vary with system isolation and to be indicative of ecological process regimes. We tested a structural equation model of ISAR parameter variation as a function of taxon, isolation, and archipelago configuration, using a globally distributed dataset of 151 ISARs encompassing a range of taxa and archipelago types. The resulting models revealed a negative relationship between ISAR intercept and slope as a function of archipelago species richness, in turn shaped by taxon differences and by the amount and disposition of archipelago area. These results suggest that local-scale (intra-archipelago) processes have a substantial role in determining ISAR form, obscuring the diversity patterns predicted by island theory as a function of archipelago isolation. These findings have implications for the use and interpretation of ISARs as a tool within biogeography, ecology, and conservation.


Assuntos
Biodiversidade , Ilhas , Animais , Geografia , Modelos Teóricos
5.
Science ; 357(6354)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860356

RESUMO

Islands provide classic model biological systems. We review how growing appreciation of geoenvironmental dynamics of marine islands has led to advances in island biogeographic theory accommodating both evolutionary and ecological phenomena. Recognition of distinct island geodynamics permits general models to be developed and modified to account for patterns of diversity, diversification, lineage development, and trait evolution within and across island archipelagos. Emergent patterns of diversity include predictable variation in island species-area relationships, progression rule colonization from older to younger land masses, and syndromes including loss of dispersability and secondary woodiness in herbaceous plant lineages. Further developments in Earth system science, molecular biology, and trait data for islands hold continued promise for unlocking many of the unresolved questions in evolutionary biology and biogeography.


Assuntos
Biodiversidade , Ilhas , Florestas , Oceanos e Mares , Filogeografia
6.
Sci Rep ; 7(1): 3899, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634340

RESUMO

Species abundance distributions (SAD) are central to the description of diversity and have played a major role in the development of theories of biodiversity and biogeography. However, most work on species abundance distributions has focused on one single spatial scale. Here we used data on arthropods to test predictions obtained with computer simulations on whether dispersal ability influences the rate of change of SADs as a function of sample size. To characterize the change of the shape of the SADs we use the moments of the distributions: the skewness and the raw moments. In agreement with computer simulations, low dispersal ability species generate a hump for intermediate abundance classes earlier than the distributions of high dispersal ability species. Importantly, when plotted as function of sample size, the raw moments of the SADs of arthropods have a power law pattern similar to that observed for the SAD of tropical tree species, thus we conjecture that this might be a general pattern in ecology. The existence of this pattern allows us to extrapolate the moments and thus reconstruct the SAD for larger sample sizes using a procedure borrowed from the field of image analysis based on scaled discrete Tchebichef moments and polynomials.


Assuntos
Artrópodes , Biodiversidade , Ecossistema , Densidade Demográfica , Algoritmos , Animais , Modelos Teóricos
7.
J Biol Res (Thessalon) ; 24: 4, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28251115

RESUMO

The Aegean archipelago, comprising numerous islands and islets with great heterogeneity in topographic, geological, historical and environmental properties, offers an ideal natural laboratory for ecological and evolutionary research, and has been the stage for a very long interaction between human civilizations and local ecosystems. This work presents insights that have been gained from past and current relevant research in the area, highlighting also the importance of the Aegean archipelago as a useful model to address many major questions in biogeography, ecology and evolutionary processes. Among the most interesting findings from such studies concern the role of habitat heterogeneity as the most important determinant of species richness, the development of a new model (Choros) for the species-area-habitats relationship, the mechanistic aspects of the Small Island Effect, the very high rates of species turnover, the lack of a role for interspecific competition in shaping species co-occurrence patterns in most cases, the importance of non adaptive radiation in diversification of several taxa, the insights into the relative roles of vicariance and dispersal in speciation, the understanding of the interplay between human presence and the establishment of exotic species and extinction of indigenous biotas. Concluding, the Aegean archipelago is an ideal stage for research in evolution, ecology and biogeography, and has the potential to become a model study area at a global level, especially for land-bridge, continental islands.

8.
Biodivers Data J ; (4): e10948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28174509

RESUMO

BACKGROUND: In this contribution we present detailed distribution and abundance data for arthropod species identified during the BALA - Biodiversity of Arthropods from the Laurisilva of the Azores (1999-2004) and BALA2 projects (2010-2011) from 18 native forest fragments in seven of the nine Azorean islands (all excluding Graciosa and Corvo islands, which have no native forest left). NEW INFORMATION: Of the total 286 species identified, 81% were captured between 1999 and 2000, a period during which only 39% of all the samples were collected. On average, arthropod richness for each island increased by 10% during the time frame of these projects. The classes Arachnida, Chilopoda and Diplopoda represent the most remarkable cases of new island records, with more than 30% of the records being novelties. This study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and more importantly to other less surveyed taxonomic groups (e.g. Diptera and Hymenoptera). These steps are fundamental for getting a more accurate assessment of biodiversity in the archipelago.

9.
Ecol Evol ; 5(20): 4671-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26668731

RESUMO

A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio-temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time-isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time-isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio-temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.

10.
BMC Evol Biol ; 15: 250, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26559388

RESUMO

BACKGROUND: For a remote oceanic archipelago of up to 8 Myr age, the Azores have a comparatively low level of endemism. We present an analysis of phylogeographic patterns of endemic Azorean island arthropods aimed at testing patterns of diversification in relation to the ontogeny of the archipelago, in order to distinguish between alternative models of evolutionary dynamics on islands. We collected individuals of six species (representing Araneae, Hemiptera and Coleoptera) from 16 forest fragments from 7 islands. Using three mtDNA markers, we analysed the distribution of genetic diversity within and between islands, inferred the differentiation time-frames and investigated the inter-island migration routes and colonization patterns. RESULTS: Each species exhibited very low levels of mtDNA divergence, both within and between islands. The two oldest islands were not strongly involved in the diffusion of genetic diversity within the archipelago. The most haplotype-rich islands varied according to species but the younger, central islands contributed the most to haplotype diversity. Colonization events both in concordance with and in contradiction to an inter-island progression rule were inferred, while a non-intuitive pattern of colonization from western to eastern islands was also inferred. CONCLUSIONS: The geological development of the Azores has followed a less tidy progression compared to classic hotspot archipelagos, and this is reflected in our findings. The study species appear to have been differentiating within the Azores for <2 Myr, a fraction of the apparent life span of the archipelago, which may indicate that extinction events linked to active volcanism have played an important role. Assuming that after each extinction event, colonization was initiated from a nearby island hosting derived haplotypes, the apparent age of species diversification in the archipelago would be moved closer to the present after each extinction-recolonization cycle. Exploiting these ideas, we propose a general model for future testing.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Filogeografia , Animais , Açores , Evolução Biológica , DNA Mitocondrial/genética , Variação Genética , Haplótipos , Oceanos e Mares , Filogenia
11.
Biol Lett ; 11(6): 20150273, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26063753

RESUMO

Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas.


Assuntos
Besouros/fisiologia , Extinção Biológica , Distribuição Animal , Animais , Açores , Tamanho Corporal , Ecossistema
12.
Ecol Lett ; 18(2): 200-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560682

RESUMO

The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, 'An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.


Assuntos
Evolução Biológica , Ilhas , Modelos Biológicos , Biodiversidade , Ecologia , Ecossistema , Fluxo Gênico , Especiação Genética , Geografia , Dinâmica Populacional , Isolamento Social
13.
Proc Natl Acad Sci U S A ; 111(38): 13709-14, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25225395

RESUMO

Analyses of species-diversity patterns of remote islands have been crucial to the development of biogeographic theory, yet little is known about corresponding patterns in functional traits on islands and how, for example, they may be affected by the introduction of exotic species. We collated trait data for spiders and beetles and used a functional diversity index (FRic) to test for nonrandomness in the contribution of endemic, other native (also combined as indigenous), and exotic species to functional-trait space across the nine islands of the Azores. In general, for both taxa and for each distributional category, functional diversity increases with species richness, which, in turn scales with island area. Null simulations support the hypothesis that each distributional group contributes to functional diversity in proportion to their species richness. Exotic spiders have added novel trait space to a greater degree than have exotic beetles, likely indicating greater impact of the reduction of immigration filters and/or differential historical losses of indigenous species. Analyses of species occurring in native-forest remnants provide limited indications of the operation of habitat filtering of exotics for three islands, but only for beetles. Although the general linear (not saturating) pattern of trait-space increase with richness of exotics suggests an ongoing process of functional enrichment and accommodation, further work is urgently needed to determine how estimates of extinction debt of indigenous species should be adjusted in the light of these findings.


Assuntos
Biodiversidade , Besouros/fisiologia , Filogeografia , Animais , Açores
14.
Zookeys ; (350): 1-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294081

RESUMO

Hydrobioid freshwater gastropods were collected from mainland and insular Greece. Several threatened taxa, such as Graecoanatolica vegorriticola, Pseudamnicola negropontina, Pseudamnicola pieperi, Pseudobithynia eubooensis and Pseudoislamia balcanica, were recorded from new localities. Trichonia trichonica, which has been considered extinct from its type locality for the last twenty eight years, was re-discovered, whereas the presence of Daphniola exigua, G. vegorriticola, Marstoniopsis graeca, P. pieperi and Pseudobithynia trichonis in their type localities was verified. The taxonomic status of P. negropontina and the newly discovered populations of G. vegorriticola was elucidated using COI sequence data. The new data recorded during this survey indicate that the IUCN status of some Greek endemic hydrobioids needs to be updated.

16.
Am Nat ; 174(6): E205-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19857159

RESUMO

Species richness is commonly thought to increase with habitat diversity. However, a recent theoretical model aiming to unify niche and island biogeography theories predicted a hump-shaped relationship between richness and habitat diversity. Given the contradiction between model results and previous knowledge, we examine whether the relationship between species richness and habitat diversity is consistently monotonically increasing and under which circumstances, if at all, such relationships could be hump shaped. We review the empirical evidence about the shape of such relationships and show that species richness on islands usually increases with habitat diversity and that it never decreases. We also critically examine the assumptions of the theoretical model and modify them to incorporate a less restrictive definition of niche width. The modified assumptions lead to simulations that better capture real patterns, using either simple parameters or observed distributions of niche breadth. Further work is needed to incorporate ecological interactions and metacommunity dynamics if the aim is to merge niche and island biogeography theories in a realistic modeling framework.


Assuntos
Biodiversidade , Geografia , Modelos Teóricos , Animais , Modelos Lineares , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...