Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(15): 153603, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357047

RESUMO

We investigate, experimentally and theoretically, the dynamics of a laser-driven cavity with noninstantaneous effective photon-photon interactions. Scanning the laser-cavity frequency detuning at different speeds across an optical bistability, we find a hysteresis area that is a nonmonotonic function of the speed. In the limit of fast scans comparable to the memory time of the interactions, we demonstrate that the hysteresis area decays following a universal power law with scaling exponent -1. We further demonstrate a regime of non-Markovian dynamics emerging from white noise. This regime is evidenced by peaked distributions of residence times in the metastable states of our system. Our results offer new perspectives for exploring the physics of scaling, universality, and metastability, in non-Markovian regimes using arrays of bistable optical cavities with low quality factors, driven by low laser powers, and at room temperature.

2.
Nat Commun ; 9(1): 4797, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442886

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe2 in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.

3.
Opt Express ; 26(6): 7056-7065, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609391

RESUMO

We report progress in the development of tunable room temperature triggered single photon sources based on single nitrogen-vacancy (NV) centres in nanodiamond coupled to open access optical micro-cavities. The feeding of fluorescence from an NV centre into the cavity mode increases the spectral density of the emission and results in an output stream of triggered single photons with spectral line width of order 1 nm, tunable in the range 640 - 700 nm. We record single photon purities exceeding 96% and estimated device efficiencies up to 3%. We compare performance using plano-concave microcavities with radii of curvature from 25 µm to 4 µm and show that up to 17% of the total emission is fed into the TEM00 mode. Pulsed Hanbury-Brown Twiss (HBT) interferometry shows that an improvement in single photon purity is facilitated due to the increased spectral density.

5.
Sci Rep ; 6: 33134, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640988

RESUMO

Two-dimensional transition metal dichalcogenides exhibit strong optical transitions with significant potential for optoelectronic devices. In particular they are suited for cavity quantum electrodynamics in which strong coupling leads to polariton formation as a root to realisation of inversionless lasing, polariton condensation and superfluidity. Demonstrations of such strongly correlated phenomena to date have often relied on cryogenic temperatures, high excitation densities and were frequently impaired by strong material disorder. At room-temperature, experiments approaching the strong coupling regime with transition metal dichalcogenides have been reported, but well resolved exciton-polaritons have yet to be achieved. Here we report a study of monolayer WS2 coupled to an open Fabry-Perot cavity at room-temperature, in which polariton eigenstates are unambiguously displayed. In-situ tunability of the cavity length results in a maximal Rabi splitting of hΩRabi = 70 meV, exceeding the exciton linewidth. Our data are well described by a transfer matrix model appropriate for the large linewidth regime. This work provides a platform towards observing strongly correlated polariton phenomena in compact photonic devices for ambient temperature applications.

6.
Nano Lett ; 16(10): 6172-6177, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27652604

RESUMO

Characterization and trapping of nanoparticles in solution is of great importance for lab-on-a-chip applications in biomedical, environmental, and materials sciences. Devices are now starting to emerge allowing such manipulations and investigations in real-time. Better insights into the interaction between the nanoparticle and the optical trap is therefore necessary in order to move forward in this field. In this work, we present a new kind of nanotweezers based on open microcavities. We show that by monitoring the cavity mode wavelength shift as the particle diffuses through the cavity, it is possible to establish both the nanoparticle polarizability and its coefficient of friction. Additionally, our experiment provides a deep insight in the interaction between the nanoparticle and the cavity mode. The technique has built-in calibration of the trap strength and spring constant, making it attractive for practical applications. This work illustrates the potential of such optical microcavities for future developments in nanoparticle sensors and lab-on-a-chip devices.

7.
Phys Rev Lett ; 115(24): 246401, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705642

RESUMO

We report an extended family of spin textures of zero-dimensional exciton-polaritons spatially confined in tunable open microcavity structures. The transverse-electric-transverse-magnetic (TE-TM) splitting, which is enhanced in the open cavity structures, leads to polariton eigenstates carrying quantized spin vortices. Depending on the strength and anisotropy of the cavity confining potential and of the TE-TM induced splitting, which can be tuned via the excitonic or photonic fractions, the exciton-polariton emissions exhibit either spin-vortex-like patterns or linear polarization, in good agreement with theoretical modeling.

8.
Nat Commun ; 6: 8579, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446783

RESUMO

Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.

9.
Nano Lett ; 14(12): 7003-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375802

RESUMO

Integration of quasi-two-dimensional (2D) films of metal-chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.

10.
Lab Chip ; 14(21): 4244-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25208130

RESUMO

Open-access optical microcavities provide a novel approach to label-free lab-on-a-chip optofluidic sensing. They offer direct access to a highly confined electromagnetic field, and yield a femtoliter detection volume. This article describes the characteristics of these devices for refractive index sensing. We show that most of the ambient noise can be removed from the refractive index data by simultaneous tracking of resonances across an array of cavities. A sensitivity of 3.5 × 10(-4) RIU is demonstrated which corresponds to detecting the refractive index change caused by the presence of 500,000 glucose molecules in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...